tokenpocket安卓版官网下载|hqg
百度知道 - 信息提示
百度知道 - 信息提示
百度首页
商城
注册
登录
网页
资讯
视频
图片
知道
文库
贴吧采购
地图更多
搜索答案
我要提问
百度知道>提示信息
知道宝贝找不到问题了>_
该问题可能已经失效。返回首页
15秒以后自动返回
帮助
| 意见反馈
| 投诉举报
京ICP证030173号-1 京网文【2023】1034-029号 ©2024Baidu 使用百度前必读 | 知道协议
[2307.07829] HQG-Net: Unpaired Medical Image Enhancement with High-Quality Guidance
[2307.07829] HQG-Net: Unpaired Medical Image Enhancement with High-Quality Guidance
Skip to main content
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
> eess > arXiv:2307.07829
Help | Advanced Search
All fields
Title
Author
Abstract
Comments
Journal reference
ACM classification
MSC classification
Report number
arXiv identifier
DOI
ORCID
arXiv author ID
Help pages
Full text
Search
open search
GO
open navigation menu
quick links
Login
Help Pages
About
Electrical Engineering and Systems Science > Image and Video Processing
arXiv:2307.07829 (eess)
[Submitted on 15 Jul 2023]
Title:HQG-Net: Unpaired Medical Image Enhancement with High-Quality Guidance
Authors:Chunming He, Kai Li, Guoxia Xu, Jiangpeng Yan, Longxiang Tang, Yulun Zhang, Xiu Li, Yaowei Wang Download a PDF of the paper titled HQG-Net: Unpaired Medical Image Enhancement with High-Quality Guidance, by Chunming He and 6 other authors
Download PDF
Abstract:Unpaired Medical Image Enhancement (UMIE) aims to transform a low-quality (LQ) medical image into a high-quality (HQ) one without relying on paired images for training. While most existing approaches are based on Pix2Pix/CycleGAN and are effective to some extent, they fail to explicitly use HQ information to guide the enhancement process, which can lead to undesired artifacts and structural distortions. In this paper, we propose a novel UMIE approach that avoids the above limitation of existing methods by directly encoding HQ cues into the LQ enhancement process in a variational fashion and thus model the UMIE task under the joint distribution between the LQ and HQ domains. Specifically, we extract features from an HQ image and explicitly insert the features, which are expected to encode HQ cues, into the enhancement network to guide the LQ enhancement with the variational normalization module. We train the enhancement network adversarially with a discriminator to ensure the generated HQ image falls into the HQ domain. We further propose a content-aware loss to guide the enhancement process with wavelet-based pixel-level and multi-encoder-based feature-level constraints. Additionally, as a key motivation for performing image enhancement is to make the enhanced images serve better for downstream tasks, we propose a bi-level learning scheme to optimize the UMIE task and downstream tasks cooperatively, helping generate HQ images both visually appealing and favorable for downstream tasks. Experiments on three medical datasets, including two newly collected datasets, verify that the proposed method outperforms existing techniques in terms of both enhancement quality and downstream task performance. We will make the code and the newly collected datasets publicly available for community study.
Comments:
14 pages, 10 figures
Subjects:
Image and Video Processing (eess.IV); Computer Vision and Pattern Recognition (cs.CV)
Cite as:
arXiv:2307.07829 [eess.IV]
(or
arXiv:2307.07829v1 [eess.IV] for this version)
https://doi.org/10.48550/arXiv.2307.07829
Focus to learn more
arXiv-issued DOI via DataCite
Submission history From: Chunming He [view email] [v1]
Sat, 15 Jul 2023 15:26:25 UTC (8,438 KB)
Full-text links:
Access Paper:
Download a PDF of the paper titled HQG-Net: Unpaired Medical Image Enhancement with High-Quality Guidance, by Chunming He and 6 other authorsDownload PDFTeX SourceOther Formats
view license
Current browse context: eess.IV
< prev
|
next >
new
|
recent
|
2307
Change to browse by:
cs
cs.CV
eess
References & Citations
NASA ADSGoogle Scholar
Semantic Scholar
a
export BibTeX citation
Loading...
BibTeX formatted citation
×
loading...
Data provided by:
Bookmark
Bibliographic Tools
Bibliographic and Citation Tools
Bibliographic Explorer Toggle
Bibliographic Explorer (What is the Explorer?)
Litmaps Toggle
Litmaps (What is Litmaps?)
scite.ai Toggle
scite Smart Citations (What are Smart Citations?)
Code, Data, Media
Code, Data and Media Associated with this Article
Links to Code Toggle
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub Toggle
DagsHub (What is DagsHub?)
GotitPub Toggle
Gotit.pub (What is GotitPub?)
Links to Code Toggle
Papers with Code (What is Papers with Code?)
ScienceCast Toggle
ScienceCast (What is ScienceCast?)
Demos
Demos
Replicate Toggle
Replicate (What is Replicate?)
Spaces Toggle
Hugging Face Spaces (What is Spaces?)
Spaces Toggle
TXYZ.AI (What is TXYZ.AI?)
Related Papers
Recommenders and Search Tools
Link to Influence Flower
Influence Flower (What are Influence Flowers?)
Connected Papers Toggle
Connected Papers (What is Connected Papers?)
Core recommender toggle
CORE Recommender (What is CORE?)
Author
Venue
Institution
Topic
About arXivLabs
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.
Which authors of this paper are endorsers? |
Disable MathJax (What is MathJax?)
About
Help
contact arXivClick here to contact arXiv
Contact
subscribe to arXiv mailingsClick here to subscribe
Subscribe
Copyright
Privacy Policy
Web Accessibility Assistance
arXiv Operational Status
Get status notifications via
or slack
GitHub - ChunmingHe/HQG-Net
GitHub - ChunmingHe/HQG-Net
Skip to content
Toggle navigation
Sign in
Product
Actions
Automate any workflow
Packages
Host and manage packages
Security
Find and fix vulnerabilities
Codespaces
Instant dev environments
Copilot
Write better code with AI
Code review
Manage code changes
Issues
Plan and track work
Discussions
Collaborate outside of code
Explore
All features
Documentation
GitHub Skills
Blog
Solutions
For
Enterprise
Teams
Startups
Education
By Solution
CI/CD & Automation
DevOps
DevSecOps
Resources
Learning Pathways
White papers, Ebooks, Webinars
Customer Stories
Partners
Open Source
GitHub Sponsors
Fund open source developers
The ReadME Project
GitHub community articles
Repositories
Topics
Trending
Collections
Pricing
Search or jump to...
Search code, repositories, users, issues, pull requests...
Search
Clear
Search syntax tips
Provide feedback
We read every piece of feedback, and take your input very seriously.
Include my email address so I can be contacted
Cancel
Submit feedback
Saved searches
Use saved searches to filter your results more quickly
Name
Query
To see all available qualifiers, see our documentation.
Cancel
Create saved search
Sign in
Sign up
You signed in with another tab or window. Reload to refresh your session.
You signed out in another tab or window. Reload to refresh your session.
You switched accounts on another tab or window. Reload to refresh your session.
Dismiss alert
ChunmingHe
/
HQG-Net
Public
Notifications
Fork
1
Star
20
20
stars
1
fork
Branches
Tags
Activity
Star
Notifications
Code
Issues
3
Pull requests
0
Actions
Projects
0
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Security
Insights
ChunmingHe/HQG-Net
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
mainBranchesTagsGo to fileCodeFolders and filesNameNameLast commit messageLast commit dateLatest commit History11 Commitsconfigsconfigs datasetsdatasets modelsmodels transformstransforms utilsutils Comparison.pngComparison.png Framework.pngFramework.png README.mdREADME.md demo.pydemo.py evaluate_idx.pyevaluate_idx.py mask_gen.pymask_gen.py pre_train.pypre_train.py requirements.txtrequirements.txt rnw_star.yamlrnw_star.yaml train.pytrain.py View all filesRepository files navigationREADMEHQG-Net_TNNLS
HQG-Net: Unpaired Medical Image Enhancement with High-Quality Guidance, TNNLS
[Paper] [Datasets] [Models]
Authors
Chunming He, Kai Li*, Guoxia Xu, Longxiang Tang, Jiangpeng Yan, Yulun Zhang, Xiu Li*, Yaowei Wang
Abstract: Unpaired Medical Image Enhancement (UMIE) aims to transform a low-quality (LQ) medical image into a high-quality (HQ) one without relying on paired images for training. While most existing approaches are based on Pix2Pix/CycleGAN and are effective to some extent, they fail to explicitly use HQ information to guide the enhancement process, which can lead to undesired artifacts and structural distortions. In this paper, we propose a novel UMIE approach that avoids the above limitation of existing methods by directly encoding HQ cues into the LQ enhancement process in a variational fashion and thus model the UMIE task under the joint distribution between the LQ and HQ domains. Specifically, we extract features from an HQ image and explicitly insert the features, which are expected to encode HQ cues, into the enhancement network to guide the LQ enhancement with the variational normalization module. We train the enhancement network adversarially with a discriminator to ensure the generated HQ image falls into the HQ domain. We further propose a content-aware loss to guide the enhancement process with wavelet-based pixel-level and multi-encoder-based feature-level constraints. Additionally, as a key motivation for performing image enhancement is to make the enhanced images serve better for downstream tasks, we propose a bi-level learning scheme to optimize the UMIE task and downstream tasks cooperatively, helping generate HQ images both visually appealing and favorable for downstream tasks. Experiments on three medical datasets, including two newly collected datasets, verify that the proposed method outperforms existing techniques in terms of both enhancement quality and downstream task performance. We will make the code and the newly collected datasets publicly available for community study.
Environment
You can install all the requirements via:
pip install -r requirements.txt
Train
python train.py
Test
python demo.py
Related Work
Structure and illumination constrained GAN for medical image enhancement, TMI21.
Citation
Concat
If you have any questions, please feel free to contact me via email at chunminghe19990224@gmail.com or hcm21@mails.tsinghua.edu.cn.
About
No description, website, or topics provided.
Resources
Readme
Activity
Stars
20
stars
Watchers
1
watching
Forks
1
fork
Report repository
Releases
No releases published
Packages
0
No packages published
Languages
Python
100.0%
Footer
© 2024 GitHub, Inc.
Footer navigation
Terms
Privacy
Security
Status
Docs
Contact
Manage cookies
Do not share my personal information
You can’t perform that action at this time.
会员登录 - 企查查
会员登录 - 企查查
HQG是什么意思? - HQG的全称 | 在线英文缩略词查询
HQG是什么意思? - HQG的全称 | 在线英文缩略词查询
↓ 跳到主内容
EnglishالعربيةБългарскиCatalàČeštinaCymraegDanskDeutschΕλληνικάEspañolEestiفارسیSuomiFrançaisעִבְרִיתहिन्दीJezikAyititMagyarBahasa IndonesiaItaliano日本語한국어LietuviųLatviešuMelayuMaltiNorskNederlandsPolskiPortuguêsRomânăРусскийSlovenčinaslovenščinaSvenskaไทยTürkçeукраїнськаاردوViệt Nam繁體中文
首页 › 3 个字母 › HQG
HQG 是什么意思?
你在寻找HQG的含义吗?在下图中,您可以看到HQG的主要定义。 如果需要,您还可以下载要打印的图像文件,或者您可以通过Facebook,Twitter,Pinterest,Google等与您的朋友分享。要查看HQG的所有含义,请向下滚动。 完整的定义列表按字母顺序显示在下表中。
HQG的主要含义
下图显示了HQG最常用的含义。 您可以将图像文件下载为PNG格式以供离线使用,或通过电子邮件发送给您的朋友。如果您是非商业网站的网站管理员,请随时在您的网站上发布HQG定义的图像。
HQG的所有定义
如上所述,您将在下表中看到HQG的所有含义。 请注意,所有定义都按字母顺序列出。您可以单击右侧的链接以查看每个定义的详细信息,包括英语和您当地语言的定义。
首字母缩写词定义HQG总部驻军
‹ HOTAS
HQP ›
语言
EnglishالعربيةБългарскиCatalàČeštinaCymraegDanskDeutschΕλληνικάEspañolEestiفارسیSuomiFrançaisעִבְרִיתहिन्दीJezikAyititMagyarBahasa IndonesiaItaliano日本語한국어LietuviųLatviešuMelayuMaltiNorskNederlandsPolskiPortuguêsRomânăРусскийSlovenčinaslovenščinaSvenskaไทยTürkçeукраїнськаاردوViệt Nam繁體中文
简体中文
Recent Posts
文章分类
>>
1
2
3
4
5
6
7
8
9
10
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
© 2014 - 2023
Abbreviation Finder. 站点地图 | Recent Posts
Terms of Use | Privacy Policy | About Us | Blog
yload":{"allShortcutsEnabled":false,"fileTree":{"":{"items":[{"name":"configs","path":"configs","contentType":"directory"},{"name":"datasets","path":"datasets","contentType":"directory"},{"name":"models","path":"models","contentType":"directory"},{"name":"transforms","path":"transforms","contentType":"directory"},{"name":"utils","path":"utils","contentType":"directory"},{"name":"Comparison.png","path":"Comparison.png","contentType":"file"},{"name":"Framework.png","path":"Framework.png","contentType":"file"},{"name":"README.md","path":"README.md","contentType":"file"},{"name":"demo.py","path":"demo.py","contentType":"file"},{"name":"evaluate_idx.py","path":"evaluate_idx.py","contentType":"file"},{"name":"mask_gen.py","path":"mask_gen.py","contentType":"file"},{"name":"pre_train.py","path":"pre_train.py","contentType":"file"},{"name":"requirements.txt","path":"requirements.txt","contentType":"file"},{"name":"rnw_star.yaml","path":"rnw_star.yaml","contentType":"file"},{"name":"train.py","path":"train.py","contentType":"file"}],"totalCount":15}},"fileTreeProcessingTime":2.076643,"foldersToFetch":[],"repo":{"id":622121385,"defaultBranch":"main","name":"HQG-Net","ownerLogin":"ChunmingHe","currentUserCanPush":false,"isFork":false,"isEmpty":false,"createdAt":"2023-04-01T07:17:31.000Z","ownerAvatar":"https://avatars.githubusercontent.com/u/55130891?v=4","public":true,"private":false,"isOrgOwned":false},"symbolsExpanded":false,"treeExpanded":true,"refInfo":{"name":"main","listCacheKey":"v0:1680336602.0","canEdit":false,"refType":"branch","currentOid":"ffbba81984f5c1a4f4046161c8c3b5c51a03fda9"},"path":"README.md","currentUser":null,"blob":{"rawLines":null,"stylingDirectives":null,"csv":null,"csvError":null,"dependabotInfo":{"showConfigurationBanner":false,"configFilePath":null,"networkDependabotPath":"/ChunmingHe/HQG-Net/network/updates","dismissConfigurationNoticePath":"/settings/dismiss-notice/dependabot_configuration_notice","configurationNoticeDismissed":null},"displayName":"README.md","displayUrl":"https://github.com/ChunmingHe/HQG-Net/blob/main/README.md?raw=true","headerInfo":{"blobSize":"2.99 KB","deleteTooltip":"You must be signed in to make or propose changes","editTooltip":"You must be signed in to make or propose changes","ghDesktopPath":"https://desktop.github.com","isGitLfs":false,"onBranch":true,"shortPath":"7b42ae7","siteNavLoginPath":"/login?return_to=https%3A%2F%2Fgithub.com%2FChunmingHe%2FHQG-Net%2Fblob%2Fmain%2FREADME.md","isCSV":false,"isRichtext":true,"toc":[{"level":1,"text":"HQG-Net_TNNLS","anchor":"hqg-net_tnnls","htmlText":"HQG-Net_TNNLS"},{"level":4,"text":"Authors","anchor":"authors","htmlText":"Authors"},{"level":2,"text":"Environment","anchor":"environment","htmlText":"Environment"},{"level":2,"text":"Train","anchor":"train","htmlText":"Train"},{"level":2,"text":"Test","anchor":"test","htmlText":"Test"},{"level":1,"text":"Related Work","anchor":"related-work","htmlText":"Related Work"},{"level":1,"text":"Citation","anchor":"citation","htmlText":"Citation"},{"level":2,"text":"Concat","anchor":"concat","htmlText":"Concat"}],"lineInfo":{"truncatedLoc":"42","truncatedSloc":"33"},"mode":"file"},"image":false,"isCodeownersFile":null,"isPlain":false,"isValidLegacyIssueTemplate":false,"issueTemplate":null,"discussionTemplate":null,"language":"Markdown","languageID":222,"large":false,"planSupportInfo":{"repoIsFork":null,"repoOwnedByCurrentUser":null,"requestFullPath":"/ChunmingHe/HQG-Net/blob/main/README.md","showFreeOrgGatedFeatureMessage":null,"showPlanSupportBanner":null,"upgradeDataAttributes":null,"upgradePath":null},"publishBannersInfo":{"dismissActionNoticePath":"/settings/dismiss-notice/publish_action_from_dockerfile","releasePath":"/ChunmingHe/HQG-Net/releases/new?marketplace=true","showPublishActionBanner":false},"rawBlobUrl":"https://github.com/ChunmingHe/HQG-Net/raw/main/README.md","renderImageOrRaw":false,"richText":"HQG-Net_TNNLS\nHQG-Net: Unpaired Medical Image Enhancement with High-Quality Guidance, TNNLS\n[Paper] [Datasets] [Models]\nAuthors\nChunming He, Kai Li*, Guoxia Xu, Longxiang Tang, Jiangpeng Yan, Yulun Zhang, Xiu Li*, Yaowei Wang\n\n\nAbstract: Unpaired Medical Image Enhancement (UMIE) aims to transform a low-quality (LQ) medical image into a high-quality (HQ) one without relying on paired images for training. While most existing approaches are based on Pix2Pix/CycleGAN and are effective to some extent, they fail to explicitly use HQ information to guide the enhancement process, which can lead to undesired artifacts and structural distortions. In this paper, we propose a novel UMIE approach that avoids the above limitation of existing methods by directly encoding HQ cues into the LQ enhancement process in a variational fashion and thus model the UMIE task under the joint distribution between the LQ and HQ domains. Specifically, we extract features from an HQ image and explicitly insert the features, which are expected to encode HQ cues, into the enhancement network to guide the LQ enhancement with the variational normalization module. We train the enhancement network adversarially with a discriminator to ensure the generated HQ image falls into the HQ domain. We further propose a content-aware loss to guide the enhancement process with wavelet-based pixel-level and multi-encoder-based feature-level constraints. Additionally, as a key motivation for performing image enhancement is to make the enhanced images serve better for downstream tasks, we propose a bi-level learning scheme to optimize the UMIE task and downstream tasks cooperatively, helping generate HQ images both visually appealing and favorable for downstream tasks. Experiments on three medical datasets, including two newly collected datasets, verify that the proposed method outperforms existing techniques in terms of both enhancement quality and downstream task performance. We will make the code and the newly collected datasets publicly available for community study.\n\n\n\n\n\n\n\n\nEnvironment\nYou can install all the requirements via:\npip install -r requirements.txt\nTrain\npython train.py\nTest\npython demo.py\nRelated Work\nStructure and illumination constrained GAN for medical image enhancement, TMI21.\nCitation\nConcat\nIf you have any questions, please feel free to contact me via email at chunminghe19990224@gmail.com or hcm21@mails.tsinghua.edu.cn.\n","renderedFileInfo":null,"shortPath":null,"symbolsEnabled":true,"tabSize":8,"topBannersInfo":{"overridingGlobalFundingFile":false,"globalPreferredFundingPath":null,"showInvalidCitationWarning":false,"citationHelpUrl":"https://docs.github.com/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-citation-files","actionsOnboardingTip":null},"truncated":false,"viewable":true,"workflowRedirectUrl":null,"symbols":{"timed_out":false,"not_analyzed":false,"symbols":[{"name":"HQG-Net_TNNLS","kind":"section_1","ident_start":2,"ident_end":15,"extent_start":0,"extent_end":2771,"fully_qualified_name":"HQG-Net_TNNLS","ident_utf16":{"start":{"line_number":0,"utf16_col":2},"end":{"line_number":0,"utf16_col":15}},"extent_utf16":{"start":{"line_number":0,"utf16_col":0},"end":{"line_number":36,"utf16_col":0}}},{"name":"Authors","kind":"section_4","ident_start":321,"ident_end":328,"extent_start":316,"extent_end":2594,"fully_qualified_name":"Authors","ident_utf16":{"start":{"line_number":5,"utf16_col":5},"end":{"line_number":5,"utf16_col":12}},"extent_utf16":{"start":{"line_number":5,"utf16_col":0},"end":{"line_number":19,"utf16_col":0}}},{"name":"Environment","kind":"section_2","ident_start":2597,"ident_end":2608,"extent_start":2594,"extent_end":2696,"fully_qualified_name":"Environment","ident_utf16":{"start":{"line_number":19,"utf16_col":3},"end":{"line_number":19,"utf16_col":14}},"extent_utf16":{"start":{"line_number":19,"utf16_col":0},"end":{"line_number":25,"utf16_col":0}}},{"name":"Train","kind":"section_2","ident_start":2699,"ident_end":2704,"extent_start":2696,"extent_end":2734,"fully_qualified_name":"Train","ident_utf16":{"start":{"line_number":25,"utf16_col":3},"end":{"line_number":25,"utf16_col":8}},"extent_utf16":{"start":{"line_number":25,"utf16_col":0},"end":{"line_number":30,"utf16_col":0}}},{"name":"Test","kind":"section_2","ident_start":2737,"ident_end":2741,"extent_start":2734,"extent_end":2771,"fully_qualified_name":"Test","ident_utf16":{"start":{"line_number":30,"utf16_col":3},"end":{"line_number":30,"utf16_col":7}},"extent_utf16":{"start":{"line_number":30,"utf16_col":0},"end":{"line_number":36,"utf16_col":0}}},{"name":"Related Work","kind":"section_1","ident_start":2773,"ident_end":2785,"extent_start":2771,"extent_end":2907,"fully_qualified_name":"Related Work","ident_utf16":{"start":{"line_number":36,"utf16_col":2},"end":{"line_number":36,"utf16_col":14}},"extent_utf16":{"start":{"line_number":36,"utf16_col":0},"end":{"line_number":38,"utf16_col":0}}},{"name":"Citation","kind":"section_1","ident_start":2909,"ident_end":2917,"extent_start":2907,"extent_end":3061,"fully_qualified_name":"Citation","ident_utf16":{"start":{"line_number":38,"utf16_col":2},"end":{"line_number":38,"utf16_col":10}},"extent_utf16":{"start":{"line_number":38,"utf16_col":0},"end":{"line_number":42,"utf16_col":0}}},{"name":"Concat","kind":"section_2","ident_start":2922,"ident_end":2928,"extent_start":2919,"extent_end":3061,"fully_qualified_name":"Concat","ident_utf16":{"start":{"line_number":40,"utf16_col":3},"end":{"line_number":40,"utf16_col":9}},"extent_utf16":{"start":{"line_number":40,"utf16_col":0},"end":{"line_number":42,"utf16_col":0}}}]}},"copilotInfo":null,"copilotAccessAllowed":false,"csrf_tokens":{"/ChunmingHe/HQG-Net/branches":{"post":"62p4XoaZcRoCDngMyVppF_yXmQw_LDE8TuVyrHE_4Yi38Fc2QoOcRO8496Cyyw30MfkrlW1CeQux6cgz4gHfHg"},"/repos/preferences":{"post":"Ec8OPgfdLkZU6T6rwmDH2ry6My5Nd_YeZ71XkzrHWyjEL1H4sczCvC5tsX1eHQxsMu8p61jZYd6PvrbrVcJ22Q"}}},"title":"HQG-Net/README.md at main · ChunmingHe/HQG-NeAlibaba Group Holding Limited acquired HQG, Inc. from NetEase, Inc. for CNY 13 billion. -September 04, 2019 | MarketScreener
aba Group Holding Limited acquired HQG, Inc. from NetEase, Inc. for CNY 13 billion. -September 04, 2019 | MarketScreenerad31dafdd13430c0.T_zW5hxGTcI57zWZaixF-zMYdzrtRU9gzgGtXmPyULA.NpKFgFgrHZF8qGyoGUAyy2pdH2CmNiMviEj8JhW_Btw1lZ-VaTEY8WymfA
Log inLog InForgot your password ?Remember
Log In
Or log in withGoogleGoogle Apple
Sign up Email Registration
Or log in withGoogleGoogle Apple
English (USA)
English (UK)
English (Canada)
English (India)
Deutsch (Deutschland)
Deutsch (Österreich)
Deutsch (Schweiz)
Español
Français (France)
Français (Suisse)
Italiano
Nederlands (Nederland)
Nederlands (België)
Log InForgot your password ?Remember
Log In
Not a member ? Email Registration
Or log in withGoogleGoogle Apple
Cancel
Markets
EquitiesTop CapitalizationUnited StatesNorth AmericaEuropeAsiaMiddle EastSector ResearchEarnings CalendarEquities AnalysisIndexesHomepageRankingsEuropeAmericaAsiaAfricaIndex AnalysisIndexes NewsS&P 500DOW JONESNASDAQ 100TSX COMPFTSE 100DAXCAC 40EURO STOXX 50Currency / ForexHomepageRankingsCurrency Cross RateCurrency ConverterForex AnalysisCurrencies NewsUSD / EURUSD / CADUSD / MXNUSD / BRLUSD / INRCommoditiesHomepageEnergyPrecious metalsAgricultureIndustrial MetalsLivestock and CattleGOLDCRUDE OIL (WTI)CRUDE OIL (BRENT)SILVERPLATINUMCryptocurrenciesHomepageRankingsChartsAnalysisNewsBITCOINETHEREUMBINANCE COINSOLANACARDANOCHAINLINKInterest RatesHomepageDeveloped NationsEmerging CountriesETFSummaryScreenerAnalysisNews
News
All NewsWorldUnited StatesEuropeNorth AmericaSouth AmericaAsiaAfricaMiddle EastEmergingCompaniesAll NewsAnalyst Reco.RumorsIPOsCapital Markets TransactionsNew ContractsProfit WarningsAppointmentsPress ReleasesSecurity TransactionsEarnings reportsNew marketsNew productsCorporate strategiesLegal risksShare buybacksMergers and acquisitionsCall TranscriptsGuidanceIndexesCurrency / ForexCommoditiesCryptocurrenciesETFInterest RatesEconomyThemesAsset ManagementActivismClimate and ESGCybersecurityGeopoliticsCentral BanksPrivate EquityInflationBusiness LeadersSectorsAll our articlesMost Read NewsHot News
Analysis
All AnalysisMust ReadEquitiesInterviewsIndexesCurrenciesCommoditiesETFCryptocurrenciesStock Trading StrategiesAllAmericaEuropeAsia
Our Shows
ShowsStrategyMust WatchSatirical CartoonToday's EditorialCrypt On ItBehind the numbers
Stock Picks
All our investmentsUnited StatesEuropeAsia, Pacific
Portfolios
Virtual PortfoliosUSA PortfolioEuropean PortfolioAsian Portfolio
Watchlists
My WatchlistsWatchlistsMy previous sessionMy most visitedMost popularInvestment StyleHomepageSmall capsGrowth stocksMomentum stocksQuality stocks at a reasonable priceYield stocksQuality stocksInvestment ThemesHomepageWaterRoboticsIn Vino VeritasThe Internet of ThingsCircular economyThe Golden Age of Video Games
Rankings
Top MoversTop MoversUnusual volumesNew Historical HighsNew Historical LowsLong TermTop FundamentalsTop FundamentalsSales growthEarnings GrowthProfitabilityFinancesRankings ValuationRankings ValuationP/E ratioEnterprise valueYieldTop ConsensusTop ConsensusAnalyst OpinionTarget priceEstimates RevisionsDivergenceTop TechnicalsTop RSIGAPSSTIMBreakoutsTrendsVolatilityTop ranking ESGTop ranking ESGEnvironmentSocialGovernanceVisibility Ranking
Screeners
Stock Screener HomeInvestment ThemesThe Golden Age of Video GamesSmart homeBiotechnology5GThe Cannabis IndustryBionic engineeringTechnical RankingsOversold stocksOverbought stocksClose to resistanceClose to supportAccumulation PhasesMost volatile stocksFundamental RankingsTop Investor RatingTop Trading RatingTop ConsensusTop GrowthTop DividendsLow valuationsMy ScreenersAll my stocksWatchlistsVirtual Portfolios
Tools
MarketScreener toolsStock ScreeneriPhone AppExpert toolsStock Screener PROPortfolio CreatorEvent ScreenerDynamic ChartEarnings CalendarEconomic CalendarCurrency ConverterProRealTime Trading
Our Services
Our subscriptionsOur Stock PicksStock ScreenerThematic Investment ListsMarketScreener PortfoliosEuropean PortfolioUSA PortfolioAsian Portfolio
Log in
Sign up
Homepage
Markets
Equities
Top CapitalizationUnited StatesNorth AmericaEuropeAsiaMiddle EastSector ResearchEarnings CalendarEquities Analysis
Indexes
HomepageRankingsEuropeAmericaAsiaAfricaIndex AnalysisIndexes NewsS&P 500DOW JONESNASDAQ 100TSX COMPFTSE 100DAXCAC 40EURO STOXX 50
Currency / Forex
HomepageRankingsCurrency Cross RateCurrency ConverterForex AnalysisCurrencies NewsUSD / EURUSD / CADUSD / MXNUSD / BRLUSD / INR
Commodities
HomepageEnergyPrecious metalsAgricultureIndustrial MetalsLivestock and CattleGOLDCRUDE OIL (WTI)CRUDE OIL (BRENT)SILVERPLATINUM
Cryptocurrencies
HomepageRankingsChartsAnalysisNewsBITCOINETHEREUMBINANCE COINSOLANACARDANOCHAINLINK
Interest Rates
HomepageDeveloped NationsEmerging Countries
ETF
SummaryScreenerAnalysisNews
News
All News
WorldUnited StatesEuropeNorth AmericaSouth AmericaAsiaAfricaMiddle EastEmerging
Companies
All NewsAnalyst Reco.RumorsIPOsCapital Markets TransactionsNew ContractsProfit WarningsAppointmentsPress ReleasesSecurity TransactionsEarnings reportsNew marketsNew productsCorporate strategiesLegal risksShare buybacksMergers and acquisitionsCall TranscriptsGuidance
Indexes
Currency / Forex
Commodities
Cryptocurrencies
ETF
Interest Rates
Economy
Themes
Asset ManagementActivismClimate and ESGCybersecurityGeopoliticsCentral BanksPrivate EquityInflationBusiness Leaders
Sectors
All our articles
Most Read News
Hot News
Analysis
All Analysis
Must Read
Equities
Interviews
Indexes
Currencies
Commodities
ETF
Cryptocurrencies
Stock Trading Strategies
AllAmericaEuropeAsia
Our Shows
Shows
Strategy
Must Watch
Satirical Cartoon
Today's Editorial
Crypt On It
Behind the numbers
Stock Picks
All our investments
United States
Europe
Asia, Pacific
Portfolios
Virtual Portfolios
USA Portfolio
European Portfolio
Asian Portfolio
Watchlists
My Watchlists
WatchlistsMy previous sessionMy most visitedMost popular
Investment Style
HomepageSmall capsGrowth stocksMomentum stocksQuality stocks at a reasonable priceYield stocksQuality stocks
Investment Themes
HomepageWaterRoboticsIn Vino VeritasThe Internet of ThingsCircular economyThe Golden Age of Video Games
Rankings
Top Movers
Top MoversUnusual volumesNew Historical HighsNew Historical LowsLong Term
Top Fundamentals
Top FundamentalsSales growthEarnings GrowthProfitabilityFinances
Rankings Valuation
Rankings ValuationP/E ratioEnterprise valueYield
Top Consensus
Top ConsensusAnalyst OpinionTarget priceEstimates RevisionsDivergence
Top Technicals
Top RSIGAPSSTIMBreakoutsTrendsVolatility
Top ranking ESG
Top ranking ESGEnvironmentSocialGovernance
Visibility Ranking
Screeners
Stock Screener Home
Investment Themes
The Golden Age of Video GamesSmart homeBiotechnology5GThe Cannabis IndustryBionic engineering
Technical Rankings
Oversold stocksOverbought stocksClose to resistanceClose to supportAccumulation PhasesMost volatile stocks
Fundamental Rankings
Top Investor RatingTop Trading RatingTop ConsensusTop GrowthTop DividendsLow valuations
My Screeners
All my stocksWatchlistsVirtual Portfolios
Tools
MarketScreener tools
Stock ScreeneriPhone App
Expert tools
Stock Screener PROPortfolio CreatorEvent Screener
Dynamic Chart
Earnings Calendar
Economic Calendar
Currency Converter
ProRealTime Trading
Our Services
Our subscriptions
Our Stock Picks
Stock Screener
Thematic Investment Lists
MarketScreener Portfolios
European PortfolioUSA PortfolioAsian Portfolio Switch edition
English (USA)
English (UK)
English (Canada)
English (India)
Deutsch (Deutschland)
Deutsch (Österreich)
Deutsch (Schweiz)
Español
Français (France)
Français (Suisse)
Italiano
Nederlands (Nederland)
Nederlands (België)
ALIBABA GROUP HOLDING LIMITED Add to a listAdd to a listTo use this feature you must be a memberLog inSign upBackPDF Report
Alibaba Group Holding Limited
Equities
BABA
US01609W1027
Internet Services
Market Closed -
Nyse
Other stock markets
04:00:42 2024-03-06 pm EST
After market
07:49:16 pm
73.71
USD
+2.28%
74.05
+0.46%
Mar. 06
JD.com Reports Higher Quarterly Profit and Revenue Amid Weak Economy
DJ
Mar. 06
HK stocks rebound, China flat as investors await signals from parliament meeting
RE
Summary
Quotes
Charts
News
Ratings
Calendar
Company
Financials
Consensus
Revisions
Funds and ETFs
Alibaba Group Holding Limited acquired HQG, Inc. from NetEase, Inc. for CNY 13 billion.
September 04, 2019
Share
Alibaba Group Holding Limited (NYSE:BABA) agreed to acquire HQG, Inc. from NetEase, Inc. (NasdaqGS:NTES) for CNY 13 billion on September 5, 2019. The consideration is comprised of CNY 10.01 billion in cash payable to NetEase, which includes the repayment of certain loans made by NetEase to HQG and to HQG equity award holders, as well as approximately 14.3 million Alibaba ordinary shares, equivalent to approximately 1.8 million American depositary shares issued to NetEase and a contingent cash consideration not exceeding CNY 700 million payable upon the satisfaction of certain non-compete provisions by the selling equity holders. The purchase price is subject to adjustments and certain payment conditions under the terms of the definitive agreements. In a related transaction, Alibaba and NetEase have entered into a definitive agreement for Alibaba, together with Yunfeng, to invest approximately $700 million in NetEase Cloud Music in its latest round of financing. Alibaba plans for HQG, Inc. to continue to operate independently under its current brand. Tmall Import and Export General Manager Alvin Liu will serve as HQG, Inc.'s new Chief Executive Officer. The transaction is subject to regulatory approval.
Tim Gardner and Chris Welty of Weil, Gotshal & Manges LLP, Hong Kong acted as legal advisors for Alibaba Group Holding Limited. Paul W. Boltz of Gibson, Dunn & Crutcher LLP acted as legal advisor to NetEase, Inc. Jonathan Zhou of Fangda Partners acted as the legal advisor to Alibaba Group Holding Limited.
Alibaba Group Holding Limited (NYSE:BABA) completed the acquisition of HQG, Inc. from NetEase, Inc. (NasdaqGS:NTES) on September 5, 2019. Share
© S&P Capital IQ - 2019
Latest news about Alibaba Group Holding Limited
JD.com Reports Higher Quarterly Profit and Revenue Amid Weak Economy
Mar. 06
DJ
HK stocks rebound, China flat as investors await signals from parliament meeting
Mar. 06
RE
HK stocks rebound, China flat as investors await signals from parliament meeting
Mar. 05
RE
Alibaba Leads Financing Package for Chinese AI Startup MiniMax
Mar. 05
MT
Global markets live: Bayer, Target, Gitlab, Tesla, Amazon...
Mar. 05
Alibaba Cloud Slashes Prices Further
Mar. 04
MT
Chairman at Alibaba's Food Delivery, Mapping Units Steps Down
Mar. 04
MT
Shanghai Xiyu Jizhi Technology Co., Ltd. announced that it has received $600 million in funding from Alibaba Group Holding Limited
Mar. 02
CI
Head of Alibaba's Struggling Food-Delivery Unit Steps Down
Mar. 01
DJ
Alibaba Slashes Prices of Core Cloud Products by Up To 55% to Boost China AI Market
Feb. 29
MT
Apple's iPhone 15 Models Prices Reduced at Resellers in China
Feb. 29
MT
Global markets live: HP, Moncler, Snowflake, Salesforce, Duolingo...
Feb. 29
News Highlights : Top Company News of the Day - Thursday at 11 AM ET
Feb. 29
DJ
News Highlights : Top Company News of the Day - Thursday at 9 AM ET
Feb. 29
DJ
Chinese retailers further discount iPhone 15
Feb. 29
RE
News Highlights : Top Company News of the Day - Thursday at 7 AM ET
Feb. 29
DJ
Alibaba's Cainiao to Build Management System for Spotter's Warehouses
Feb. 29
MT
North American Morning Briefing : Fed's Preferred Inflation Gauge in the Spotlight
Feb. 29
DJ
News Highlights : Top Company News of the Day - Thursday at 5 AM ET
Feb. 29
DJ
News Highlights : Top Company News of the Day - Thursday at 3 AM ET
Feb. 29
DJ
News Highlights : Top Company News of the Day - Thursday at 1 AM ET
Feb. 29
DJ
Alibaba Cuts China Cloud Prices to Rekindle Division's Growth
Feb. 29
DJ
Alibaba Cloud announces steepest price cut in race for AI customers
Feb. 28
RE
China's Alibaba Cloud rolls out price cuts of up to 55% on cloud products
Feb. 28
RE
Baidu Posts Record Revenue Amid Search for New Growth Engines -- Update
Feb. 28
DJ
Chart Alibaba Group Holding Limited DurationAuto.2 months3 months6 months9 months1 year2 years5 years10 yearsMax.PeriodDayWeek
More charts
Company Profile
Alibaba Group Holding Limited is the leading online Chinese marketplace. The group provides computing platform allowing individuals and professionals to make their buying and selling transactions of goods and services. The activity is organized around 3 areas:
- operation of e-commerce platform: Websites holding (Alibaba.com, Taobao.com, Tmall.com, Juhuasuan.com, Aliexpress.com, 1688.com, etc.);
- online payment services: services ensured through the Alipay.com platform;
- other: development of price comparison, interface and Web application portals, dematerialized management platforms of computing infrastructure, etc.
Sector
Internet Services
Calendar
2024-05-23
- Q4 2024 Earnings Release (Projected)
More about the company
Income Statement Evolution
More financial data
Analysis / Opinion
Alibaba Group Holding Limited : Investors are disappointed
November 21, 2023 at 10:25 am EST
IPO to watch: Alibaba's logistics arm files for Hong Kong listing
September 27, 2023 at 05:01 am EDT
More Strategies
Ratings for Alibaba Group Holding Limited
Trading Rating
Investor Rating
ESG Refinitiv
C-More Ratings
Analysts' Consensus
SellBuyMean consensusBUYNumber of Analysts45Last Close Price
530.5
CNYAverage target price
780.3
CNYSpread / Average Target+47.08%ConsensusEPS Revisions
Estimates Revisions
Quarterly earnings - Rate of surprise
Company calendar
Sector
E-commerce & Auction Services
1st Jan change
Capi.
ALIBABA GROUP HOLDING LIMITED -4.90% 185B
PDD HOLDINGS INC. -20.28% 155B
SHOPIFY INC. -4.99% 95.26B
MERCADOLIBRE, INC. -2.92% 77.34B
MEITUAN INC. +4.27% 70.18B
COPART, INC. +11.47% 52.52B
EBAY INC. +15.86% 26.18B
RAKUTEN GROUP, INC. +33.54% 11.75B
VIPSHOP HOLDINGS LIMITED -0.06% 9.63B
GLOBAL-E ONLINE LTD. -17.79% 5.35B
E-commerce & Auction Services
Indexes
Europe
America
Asia
More Indexes
My Watchlist
My listsRankings
More Top / Flop
Rankings
More Top / Flop
Currency / ForexForexCommoditiesCommoditiesCryptocurrenciesCryptocurrenciesStockEquities
Stock Alibaba Group Holding Limited - Nyse News Alibaba Group Holding LimitedAlibaba Group Holding Limited acquired HQG, Inc. from NetEase, Inc. for CNY 13 billion.
Best financial portal
+951% of historicalperformance
More than 20 yearsat your side
+
950,000
members
Quick & easycancellation
Our Expertsare here for you
OUR EXPERTS ARE HERE FOR YOUMonday - Friday 9am-12pm / 2pm-6pm GMT + 1Contact us
Legal information
|
Cookie settings
|
MarketScreener Blog
|
Copyright © 2024 Surperformance. All rights reserved.
Stock quotes are provided by Factset, Morningstar and S&P Capital IQ
-40% Limited-time offer: Our subscriptions help you unlock the best investment opportunities.
SIGN UP NOW
<Outdoor & Tactics | High Quality Gear | Home
Outdoor & Tactics | High Quality Gear | Home
Menu
Home
Taktische Ausrüstung
Tragesysteme
Taschen
Magazintaschen
Granatentaschen
Medictaschen
Mehrzwecktaschen
Zubehörtaschen
Gurtsysteme
Schutzwesten
Zubehör
Elektronik
Kleinteile/ Waffenzubehör
Neuheiten
Bekleidung
Oberbekleidung
Hosen
Kopfbedeckung
Neuheiten
Rucksäcke
Rucksäcke bis 35 Liter
Rucksäcke bis 65 Liter
Rucksäcke > 65 Liter
Duffle Bags & Taschen
Zubehör
Neuheiten
Schuhe
Stiefel
Knöchelhoch
Halbschuh
Zubehör
Neuheiten
SALE
Taktische Ausrüstung
Bekleidung
Grey Sale
Schuhe
JavaScript scheint in Ihrem Browser deaktiviert zu sein.
Sie müssen JavaScript in Ihrem Browser aktivieren, um alle Funktionen in diesem Shop nutzen zu können.
+49 (0)8042-50 390-200
info@hqg.de
Account
Mein Benutzerkonto
Mein Warenkorb
Zur Kasse
Anmelden
Deutsch
Deutsch
English
High Quality Gear
Menu
Taktische Ausrüstung
Tragesysteme
Taschen
Magazintaschen
Granatentaschen
Medictaschen
Mehrzwecktaschen
Zubehörtaschen
Gurtsysteme
Schutzwesten
Zubehör
Elektronik
Kleinteile/ Waffenzubehör
Neuheiten
Bekleidung
Oberbekleidung
Hosen
Kopfbedeckung
Neuheiten
Rucksäcke
Rucksäcke bis 35 Liter
Rucksäcke bis 65 Liter
Rucksäcke > 65 Liter
Duffle Bags & Taschen
Zubehör
Neuheiten
Schuhe
Stiefel
Knöchelhoch
Halbschuh
Zubehör
Neuheiten
SALE
Taktische Ausrüstung
Bekleidung
Grey Sale
Schuhe
0
Sie haben keine Artikel im Warenkorb.
Menu
Home
Taktische Ausrüstung
Tragesysteme
Taschen
Magazintaschen
Granatentaschen
Medictaschen
Mehrzwecktaschen
Zubehörtaschen
Gurtsysteme
Schutzwesten
Zubehör
Elektronik
Kleinteile/ Waffenzubehör
Neuheiten
Bekleidung
Oberbekleidung
Hosen
Kopfbedeckung
Neuheiten
Rucksäcke
Rucksäcke bis 35 Liter
Rucksäcke bis 65 Liter
Rucksäcke > 65 Liter
Duffle Bags & Taschen
Zubehör
Neuheiten
Schuhe
Stiefel
Knöchelhoch
Halbschuh
Zubehör
Neuheiten
SALE
Taktische Ausrüstung
Bekleidung
Grey Sale
Schuhe
Alle Kategorien
Taktische Ausrüstung Tragesysteme Taschen Magazintaschen Granatentaschen Medictaschen Mehrzwecktaschen Zubehörtaschen Gurtsysteme Schutzwesten Zubehör Elektronik Kleinteile/ Waffenzubehör NeuheitenBekleidung Oberbekleidung Hosen Kopfbedeckung NeuheitenRucksäcke Rucksäcke bis 35 Liter Rucksäcke bis 65 Liter Rucksäcke > 65 Liter Duffle Bags & Taschen Zubehör NeuheitenSchuhe Stiefel Knöchelhoch Halbschuh Zubehör NeuheitenSALE Taktische Ausrüstung Bekleidung Grey Sale Schuhe
Sie befinden sich auf einem Online-Shop in Deutschland. Die angezeigten Preise enthalten daher 19% MwSt und werden im Zuge des Bestellvorganges auf Basis der EU-Mehrwertsteuervorschriften für Fernverkäufe mit dem MwSt-Satz Ihrer Lieferanschrift umgerechnet.
Verstanden
GEAR UPGEAR UPGEAR UPGEAR UP NOW
GEAR UPGET YOURS NOW IN
EMPFEHLUNGEN des Monats
NEU
Lindnerhof
SCHIESSSACK LT346
79,95 €
NEU
Lindnerhof
SCHIESSSACK ALCANTARA SCHWER LT349
119,95 €
NEU
Lindnerhof
SCHIESSSACK SCHWER LT348
79,95 €
AUCH GEIL
Lindnerhof
SCHIESSSACK LT644
29,95 €
10% Behördenrabattsichern
Einfach Rabatt sichern mit Kopie des Behördenausweises
Marken
Der Shop für Spezialisten
SERVICE
Zahlungsarten
Rücksendungen
Versandkosten
Behördenrabatt
Newsletter
Farbmatrix
ÜBER HQG
Unternehmen
Philosophie
Kontakt
RECHTLICHES
AGB
Datenschutzerklärung
Kundeninformationen/Ges. Pflichtinformationen
Widerrufsrecht
Widerrufsformular
Impressum
FOLLOW US
ZAHLUNGSMÖGLICHKEITEN
KreditkarteVorkasse
©2021 HQG by Lindnerhof-Taktik GmbH