tokenpocket安卓版官网下载|hqg

作者: tokenpocket安卓版官网下载
2024-03-07 19:10:06

百度知道 - 信息提示

百度知道 - 信息提示

百度首页

商城

注册

登录

网页

资讯

视频

图片

知道

文库

贴吧采购

地图更多

搜索答案

我要提问

百度知道>提示信息

知道宝贝找不到问题了>_

该问题可能已经失效。返回首页

15秒以后自动返回

帮助

 | 意见反馈

 | 投诉举报

京ICP证030173号-1   京网文【2023】1034-029号     ©2024Baidu  使用百度前必读 | 知道协议 

[2307.07829] HQG-Net: Unpaired Medical Image Enhancement with High-Quality Guidance

[2307.07829] HQG-Net: Unpaired Medical Image Enhancement with High-Quality Guidance

Skip to main content

We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate

> eess > arXiv:2307.07829

Help | Advanced Search

All fields

Title

Author

Abstract

Comments

Journal reference

ACM classification

MSC classification

Report number

arXiv identifier

DOI

ORCID

arXiv author ID

Help pages

Full text

Search

open search

GO

open navigation menu

quick links

Login

Help Pages

About

Electrical Engineering and Systems Science > Image and Video Processing

arXiv:2307.07829 (eess)

[Submitted on 15 Jul 2023]

Title:HQG-Net: Unpaired Medical Image Enhancement with High-Quality Guidance

Authors:Chunming He, Kai Li, Guoxia Xu, Jiangpeng Yan, Longxiang Tang, Yulun Zhang, Xiu Li, Yaowei Wang Download a PDF of the paper titled HQG-Net: Unpaired Medical Image Enhancement with High-Quality Guidance, by Chunming He and 6 other authors

Download PDF

Abstract:Unpaired Medical Image Enhancement (UMIE) aims to transform a low-quality (LQ) medical image into a high-quality (HQ) one without relying on paired images for training. While most existing approaches are based on Pix2Pix/CycleGAN and are effective to some extent, they fail to explicitly use HQ information to guide the enhancement process, which can lead to undesired artifacts and structural distortions. In this paper, we propose a novel UMIE approach that avoids the above limitation of existing methods by directly encoding HQ cues into the LQ enhancement process in a variational fashion and thus model the UMIE task under the joint distribution between the LQ and HQ domains. Specifically, we extract features from an HQ image and explicitly insert the features, which are expected to encode HQ cues, into the enhancement network to guide the LQ enhancement with the variational normalization module. We train the enhancement network adversarially with a discriminator to ensure the generated HQ image falls into the HQ domain. We further propose a content-aware loss to guide the enhancement process with wavelet-based pixel-level and multi-encoder-based feature-level constraints. Additionally, as a key motivation for performing image enhancement is to make the enhanced images serve better for downstream tasks, we propose a bi-level learning scheme to optimize the UMIE task and downstream tasks cooperatively, helping generate HQ images both visually appealing and favorable for downstream tasks. Experiments on three medical datasets, including two newly collected datasets, verify that the proposed method outperforms existing techniques in terms of both enhancement quality and downstream task performance. We will make the code and the newly collected datasets publicly available for community study.

Comments:

14 pages, 10 figures

Subjects:

Image and Video Processing (eess.IV); Computer Vision and Pattern Recognition (cs.CV)

Cite as:

arXiv:2307.07829 [eess.IV]

 

(or

arXiv:2307.07829v1 [eess.IV] for this version)

 

https://doi.org/10.48550/arXiv.2307.07829

Focus to learn more

arXiv-issued DOI via DataCite

Submission history From: Chunming He [view email] [v1]

Sat, 15 Jul 2023 15:26:25 UTC (8,438 KB)

Full-text links:

Access Paper:

Download a PDF of the paper titled HQG-Net: Unpaired Medical Image Enhancement with High-Quality Guidance, by Chunming He and 6 other authorsDownload PDFTeX SourceOther Formats

view license

Current browse context: eess.IV

< prev

  |  

next >

new

|

recent

|

2307

Change to browse by:

cs

cs.CV

eess

References & Citations

NASA ADSGoogle Scholar

Semantic Scholar

a

export BibTeX citation

Loading...

BibTeX formatted citation

×

loading...

Data provided by:

Bookmark

Bibliographic Tools

Bibliographic and Citation Tools

Bibliographic Explorer Toggle

Bibliographic Explorer (What is the Explorer?)

Litmaps Toggle

Litmaps (What is Litmaps?)

scite.ai Toggle

scite Smart Citations (What are Smart Citations?)

Code, Data, Media

Code, Data and Media Associated with this Article

Links to Code Toggle

CatalyzeX Code Finder for Papers (What is CatalyzeX?)

DagsHub Toggle

DagsHub (What is DagsHub?)

GotitPub Toggle

Gotit.pub (What is GotitPub?)

Links to Code Toggle

Papers with Code (What is Papers with Code?)

ScienceCast Toggle

ScienceCast (What is ScienceCast?)

Demos

Demos

Replicate Toggle

Replicate (What is Replicate?)

Spaces Toggle

Hugging Face Spaces (What is Spaces?)

Spaces Toggle

TXYZ.AI (What is TXYZ.AI?)

Related Papers

Recommenders and Search Tools

Link to Influence Flower

Influence Flower (What are Influence Flowers?)

Connected Papers Toggle

Connected Papers (What is Connected Papers?)

Core recommender toggle

CORE Recommender (What is CORE?)

Author

Venue

Institution

Topic

About arXivLabs

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? |

Disable MathJax (What is MathJax?)

About

Help

contact arXivClick here to contact arXiv

Contact

subscribe to arXiv mailingsClick here to subscribe

Subscribe

Copyright

Privacy Policy

Web Accessibility Assistance

arXiv Operational Status

Get status notifications via

email

or slack

GitHub - ChunmingHe/HQG-Net

GitHub - ChunmingHe/HQG-Net

Skip to content

Toggle navigation

Sign in

Product

Actions

Automate any workflow

Packages

Host and manage packages

Security

Find and fix vulnerabilities

Codespaces

Instant dev environments

Copilot

Write better code with AI

Code review

Manage code changes

Issues

Plan and track work

Discussions

Collaborate outside of code

Explore

All features

Documentation

GitHub Skills

Blog

Solutions

For

Enterprise

Teams

Startups

Education

By Solution

CI/CD & Automation

DevOps

DevSecOps

Resources

Learning Pathways

White papers, Ebooks, Webinars

Customer Stories

Partners

Open Source

GitHub Sponsors

Fund open source developers

The ReadME Project

GitHub community articles

Repositories

Topics

Trending

Collections

Pricing

Search or jump to...

Search code, repositories, users, issues, pull requests...

Search

Clear

Search syntax tips

Provide feedback

We read every piece of feedback, and take your input very seriously.

Include my email address so I can be contacted

Cancel

Submit feedback

Saved searches

Use saved searches to filter your results more quickly

Name

Query

To see all available qualifiers, see our documentation.

Cancel

Create saved search

Sign in

Sign up

You signed in with another tab or window. Reload to refresh your session.

You signed out in another tab or window. Reload to refresh your session.

You switched accounts on another tab or window. Reload to refresh your session.

Dismiss alert

ChunmingHe

/

HQG-Net

Public

Notifications

Fork

1

Star

20

20

stars

1

fork

Branches

Tags

Activity

Star

Notifications

Code

Issues

3

Pull requests

0

Actions

Projects

0

Security

Insights

Additional navigation options

Code

Issues

Pull requests

Actions

Projects

Security

Insights

ChunmingHe/HQG-Net

This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

 mainBranchesTagsGo to fileCodeFolders and filesNameNameLast commit messageLast commit dateLatest commit History11 Commitsconfigsconfigs  datasetsdatasets  modelsmodels  transformstransforms  utilsutils  Comparison.pngComparison.png  Framework.pngFramework.png  README.mdREADME.md  demo.pydemo.py  evaluate_idx.pyevaluate_idx.py  mask_gen.pymask_gen.py  pre_train.pypre_train.py  requirements.txtrequirements.txt  rnw_star.yamlrnw_star.yaml  train.pytrain.py  View all filesRepository files navigationREADMEHQG-Net_TNNLS

HQG-Net: Unpaired Medical Image Enhancement with High-Quality Guidance, TNNLS

[Paper] [Datasets] [Models]

Authors

Chunming He, Kai Li*, Guoxia Xu, Longxiang Tang, Jiangpeng Yan, Yulun Zhang, Xiu Li*, Yaowei Wang

Abstract: Unpaired Medical Image Enhancement (UMIE) aims to transform a low-quality (LQ) medical image into a high-quality (HQ) one without relying on paired images for training. While most existing approaches are based on Pix2Pix/CycleGAN and are effective to some extent, they fail to explicitly use HQ information to guide the enhancement process, which can lead to undesired artifacts and structural distortions. In this paper, we propose a novel UMIE approach that avoids the above limitation of existing methods by directly encoding HQ cues into the LQ enhancement process in a variational fashion and thus model the UMIE task under the joint distribution between the LQ and HQ domains. Specifically, we extract features from an HQ image and explicitly insert the features, which are expected to encode HQ cues, into the enhancement network to guide the LQ enhancement with the variational normalization module. We train the enhancement network adversarially with a discriminator to ensure the generated HQ image falls into the HQ domain. We further propose a content-aware loss to guide the enhancement process with wavelet-based pixel-level and multi-encoder-based feature-level constraints. Additionally, as a key motivation for performing image enhancement is to make the enhanced images serve better for downstream tasks, we propose a bi-level learning scheme to optimize the UMIE task and downstream tasks cooperatively, helping generate HQ images both visually appealing and favorable for downstream tasks. Experiments on three medical datasets, including two newly collected datasets, verify that the proposed method outperforms existing techniques in terms of both enhancement quality and downstream task performance. We will make the code and the newly collected datasets publicly available for community study.

Environment

You can install all the requirements via:

pip install -r requirements.txt

Train

python train.py

Test

python demo.py

Related Work

Structure and illumination constrained GAN for medical image enhancement, TMI21.

Citation

Concat

If you have any questions, please feel free to contact me via email at chunminghe19990224@gmail.com or hcm21@mails.tsinghua.edu.cn.

About

No description, website, or topics provided.

Resources

Readme

Activity

Stars

20

stars

Watchers

1

watching

Forks

1

fork

Report repository

Releases

No releases published

Packages

0

No packages published

Languages

Python

100.0%

Footer

© 2024 GitHub, Inc.

Footer navigation

Terms

Privacy

Security

Status

Docs

Contact

Manage cookies

Do not share my personal information

You can’t perform that action at this time.

会员登录 - 企查查

会员登录 - 企查查

HQG是什么意思? - HQG的全称 | 在线英文缩略词查询

HQG是什么意思? - HQG的全称 | 在线英文缩略词查询

↓ 跳到主内容

EnglishالعربيةБългарскиCatalàČeštinaCymraegDanskDeutschΕλληνικάEspañolEestiفارسیSuomiFrançaisעִבְרִיתहिन्दीJezikAyititMagyarBahasa IndonesiaItaliano日本語한국어LietuviųLatviešuMelayuMaltiNorskNederlandsPolskiPortuguêsRomânăРусскийSlovenčinaslovenščinaSvenskaไทยTürkçeукраїнськаاردوViệt Nam繁體中文

首页 › 3 个字母 › HQG

HQG 是什么意思?

你在寻找HQG的含义吗?在下图中,您可以看到HQG的主要定义。 如果需要,您还可以下载要打印的图像文件,或者您可以通过Facebook,Twitter,Pinterest,Google等与您的朋友分享。要查看HQG的所有含义,请向下滚动。 完整的定义列表按字母顺序显示在下表中。

HQG的主要含义

下图显示了HQG最常用的含义。 您可以将图像文件下载为PNG格式以供离线使用,或通过电子邮件发送给您的朋友。如果您是非商业网站的网站管理员,请随时在您的网站上发布HQG定义的图像。

HQG的所有定义

如上所述,您将在下表中看到HQG的所有含义。 请注意,所有定义都按字母顺序列出。您可以单击右侧的链接以查看每个定义的详细信息,包括英语和您当地语言的定义。

首字母缩写词定义HQG总部驻军

‹ HOTAS

HQP ›

语言

EnglishالعربيةБългарскиCatalàČeštinaCymraegDanskDeutschΕλληνικάEspañolEestiفارسیSuomiFrançaisעִבְרִיתहिन्दीJezikAyititMagyarBahasa IndonesiaItaliano日本語한국어LietuviųLatviešuMelayuMaltiNorskNederlandsPolskiPortuguêsRomânăРусскийSlovenčinaslovenščinaSvenskaไทยTürkçeукраїнськаاردوViệt Nam繁體中文

简体中文

Recent Posts

文章分类  

>>   

1   

2   

3   

4   

5   

6   

7   

8   

9   

10   

A   

B   

C   

D   

E   

F   

G   

H   

I   

J   

K   

L   

M   

N   

O   

P   

Q   

R   

S   

T   

U   

V   

W   

X   

Y   

Z   

© 2014 - 2023

Abbreviation Finder. 站点地图 | Recent Posts

Terms of Use | Privacy Policy | About Us | Blog

yload":{"allShortcutsEnabled":false,"fileTree":{"":{"items":[{"name":"configs","path":"configs","contentType":"directory"},{"name":"datasets","path":"datasets","contentType":"directory"},{"name":"models","path":"models","contentType":"directory"},{"name":"transforms","path":"transforms","contentType":"directory"},{"name":"utils","path":"utils","contentType":"directory"},{"name":"Comparison.png","path":"Comparison.png","contentType":"file"},{"name":"Framework.png","path":"Framework.png","contentType":"file"},{"name":"README.md","path":"README.md","contentType":"file"},{"name":"demo.py","path":"demo.py","contentType":"file"},{"name":"evaluate_idx.py","path":"evaluate_idx.py","contentType":"file"},{"name":"mask_gen.py","path":"mask_gen.py","contentType":"file"},{"name":"pre_train.py","path":"pre_train.py","contentType":"file"},{"name":"requirements.txt","path":"requirements.txt","contentType":"file"},{"name":"rnw_star.yaml","path":"rnw_star.yaml","contentType":"file"},{"name":"train.py","path":"train.py","contentType":"file"}],"totalCount":15}},"fileTreeProcessingTime":2.076643,"foldersToFetch":[],"repo":{"id":622121385,"defaultBranch":"main","name":"HQG-Net","ownerLogin":"ChunmingHe","currentUserCanPush":false,"isFork":false,"isEmpty":false,"createdAt":"2023-04-01T07:17:31.000Z","ownerAvatar":"https://avatars.githubusercontent.com/u/55130891?v=4","public":true,"private":false,"isOrgOwned":false},"symbolsExpanded":false,"treeExpanded":true,"refInfo":{"name":"main","listCacheKey":"v0:1680336602.0","canEdit":false,"refType":"branch","currentOid":"ffbba81984f5c1a4f4046161c8c3b5c51a03fda9"},"path":"README.md","currentUser":null,"blob":{"rawLines":null,"stylingDirectives":null,"csv":null,"csvError":null,"dependabotInfo":{"showConfigurationBanner":false,"configFilePath":null,"networkDependabotPath":"/ChunmingHe/HQG-Net/network/updates","dismissConfigurationNoticePath":"/settings/dismiss-notice/dependabot_configuration_notice","configurationNoticeDismissed":null},"displayName":"README.md","displayUrl":"https://github.com/ChunmingHe/HQG-Net/blob/main/README.md?raw=true","headerInfo":{"blobSize":"2.99 KB","deleteTooltip":"You must be signed in to make or propose changes","editTooltip":"You must be signed in to make or propose changes","ghDesktopPath":"https://desktop.github.com","isGitLfs":false,"onBranch":true,"shortPath":"7b42ae7","siteNavLoginPath":"/login?return_to=https%3A%2F%2Fgithub.com%2FChunmingHe%2FHQG-Net%2Fblob%2Fmain%2FREADME.md","isCSV":false,"isRichtext":true,"toc":[{"level":1,"text":"HQG-Net_TNNLS","anchor":"hqg-net_tnnls","htmlText":"HQG-Net_TNNLS"},{"level":4,"text":"Authors","anchor":"authors","htmlText":"Authors"},{"level":2,"text":"Environment","anchor":"environment","htmlText":"Environment"},{"level":2,"text":"Train","anchor":"train","htmlText":"Train"},{"level":2,"text":"Test","anchor":"test","htmlText":"Test"},{"level":1,"text":"Related Work","anchor":"related-work","htmlText":"Related Work"},{"level":1,"text":"Citation","anchor":"citation","htmlText":"Citation"},{"level":2,"text":"Concat","anchor":"concat","htmlText":"Concat"}],"lineInfo":{"truncatedLoc":"42","truncatedSloc":"33"},"mode":"file"},"image":false,"isCodeownersFile":null,"isPlain":false,"isValidLegacyIssueTemplate":false,"issueTemplate":null,"discussionTemplate":null,"language":"Markdown","languageID":222,"large":false,"planSupportInfo":{"repoIsFork":null,"repoOwnedByCurrentUser":null,"requestFullPath":"/ChunmingHe/HQG-Net/blob/main/README.md","showFreeOrgGatedFeatureMessage":null,"showPlanSupportBanner":null,"upgradeDataAttributes":null,"upgradePath":null},"publishBannersInfo":{"dismissActionNoticePath":"/settings/dismiss-notice/publish_action_from_dockerfile","releasePath":"/ChunmingHe/HQG-Net/releases/new?marketplace=true","showPublishActionBanner":false},"rawBlobUrl":"https://github.com/ChunmingHe/HQG-Net/raw/main/README.md","renderImageOrRaw":false,"richText":"HQG-Net_TNNLS\nHQG-Net: Unpaired Medical Image Enhancement with High-Quality Guidance, TNNLS\n[Paper] [Datasets] [Models]\nAuthors\nChunming He, Kai Li*, Guoxia Xu, Longxiang Tang, Jiangpeng Yan, Yulun Zhang, Xiu Li*, Yaowei Wang\n\n\nAbstract: Unpaired Medical Image Enhancement (UMIE) aims to transform a low-quality (LQ) medical image into a high-quality (HQ) one without relying on paired images for training. While most existing approaches are based on Pix2Pix/CycleGAN and are effective to some extent, they fail to explicitly use HQ information to guide the enhancement process, which can lead to undesired artifacts and structural distortions. In this paper, we propose a novel UMIE approach that avoids the above limitation of existing methods by directly encoding HQ cues into the LQ enhancement process in a variational fashion and thus model the UMIE task under the joint distribution between the LQ and HQ domains. Specifically, we extract features from an HQ image and explicitly insert the features, which are expected to encode HQ cues, into the enhancement network to guide the LQ enhancement with the variational normalization module. We train the enhancement network adversarially with a discriminator to ensure the generated HQ image falls into the HQ domain. We further propose a content-aware loss to guide the enhancement process with wavelet-based pixel-level and multi-encoder-based feature-level constraints. Additionally, as a key motivation for performing image enhancement is to make the enhanced images serve better for downstream tasks, we propose a bi-level learning scheme to optimize the UMIE task and downstream tasks cooperatively, helping generate HQ images both visually appealing and favorable for downstream tasks. Experiments on three medical datasets, including two newly collected datasets, verify that the proposed method outperforms existing techniques in terms of both enhancement quality and downstream task performance. We will make the code and the newly collected datasets publicly available for community study.\n\n\n\n\n\n\n\n\nEnvironment\nYou can install all the requirements via:\npip install -r requirements.txt\nTrain\npython train.py\nTest\npython demo.py\nRelated Work\nStructure and illumination constrained GAN for medical image enhancement, TMI21.\nCitation\nConcat\nIf you have any questions, please feel free to contact me via email at chunminghe19990224@gmail.com or hcm21@mails.tsinghua.edu.cn.\n","renderedFileInfo":null,"shortPath":null,"symbolsEnabled":true,"tabSize":8,"topBannersInfo":{"overridingGlobalFundingFile":false,"globalPreferredFundingPath":null,"showInvalidCitationWarning":false,"citationHelpUrl":"https://docs.github.com/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-citation-files","actionsOnboardingTip":null},"truncated":false,"viewable":true,"workflowRedirectUrl":null,"symbols":{"timed_out":false,"not_analyzed":false,"symbols":[{"name":"HQG-Net_TNNLS","kind":"section_1","ident_start":2,"ident_end":15,"extent_start":0,"extent_end":2771,"fully_qualified_name":"HQG-Net_TNNLS","ident_utf16":{"start":{"line_number":0,"utf16_col":2},"end":{"line_number":0,"utf16_col":15}},"extent_utf16":{"start":{"line_number":0,"utf16_col":0},"end":{"line_number":36,"utf16_col":0}}},{"name":"Authors","kind":"section_4","ident_start":321,"ident_end":328,"extent_start":316,"extent_end":2594,"fully_qualified_name":"Authors","ident_utf16":{"start":{"line_number":5,"utf16_col":5},"end":{"line_number":5,"utf16_col":12}},"extent_utf16":{"start":{"line_number":5,"utf16_col":0},"end":{"line_number":19,"utf16_col":0}}},{"name":"Environment","kind":"section_2","ident_start":2597,"ident_end":2608,"extent_start":2594,"extent_end":2696,"fully_qualified_name":"Environment","ident_utf16":{"start":{"line_number":19,"utf16_col":3},"end":{"line_number":19,"utf16_col":14}},"extent_utf16":{"start":{"line_number":19,"utf16_col":0},"end":{"line_number":25,"utf16_col":0}}},{"name":"Train","kind":"section_2","ident_start":2699,"ident_end":2704,"extent_start":2696,"extent_end":2734,"fully_qualified_name":"Train","ident_utf16":{"start":{"line_number":25,"utf16_col":3},"end":{"line_number":25,"utf16_col":8}},"extent_utf16":{"start":{"line_number":25,"utf16_col":0},"end":{"line_number":30,"utf16_col":0}}},{"name":"Test","kind":"section_2","ident_start":2737,"ident_end":2741,"extent_start":2734,"extent_end":2771,"fully_qualified_name":"Test","ident_utf16":{"start":{"line_number":30,"utf16_col":3},"end":{"line_number":30,"utf16_col":7}},"extent_utf16":{"start":{"line_number":30,"utf16_col":0},"end":{"line_number":36,"utf16_col":0}}},{"name":"Related Work","kind":"section_1","ident_start":2773,"ident_end":2785,"extent_start":2771,"extent_end":2907,"fully_qualified_name":"Related Work","ident_utf16":{"start":{"line_number":36,"utf16_col":2},"end":{"line_number":36,"utf16_col":14}},"extent_utf16":{"start":{"line_number":36,"utf16_col":0},"end":{"line_number":38,"utf16_col":0}}},{"name":"Citation","kind":"section_1","ident_start":2909,"ident_end":2917,"extent_start":2907,"extent_end":3061,"fully_qualified_name":"Citation","ident_utf16":{"start":{"line_number":38,"utf16_col":2},"end":{"line_number":38,"utf16_col":10}},"extent_utf16":{"start":{"line_number":38,"utf16_col":0},"end":{"line_number":42,"utf16_col":0}}},{"name":"Concat","kind":"section_2","ident_start":2922,"ident_end":2928,"extent_start":2919,"extent_end":3061,"fully_qualified_name":"Concat","ident_utf16":{"start":{"line_number":40,"utf16_col":3},"end":{"line_number":40,"utf16_col":9}},"extent_utf16":{"start":{"line_number":40,"utf16_col":0},"end":{"line_number":42,"utf16_col":0}}}]}},"copilotInfo":null,"copilotAccessAllowed":false,"csrf_tokens":{"/ChunmingHe/HQG-Net/branches":{"post":"62p4XoaZcRoCDngMyVppF_yXmQw_LDE8TuVyrHE_4Yi38Fc2QoOcRO8496Cyyw30MfkrlW1CeQux6cgz4gHfHg"},"/repos/preferences":{"post":"Ec8OPgfdLkZU6T6rwmDH2ry6My5Nd_YeZ71XkzrHWyjEL1H4sczCvC5tsX1eHQxsMu8p61jZYd6PvrbrVcJ22Q"}}},"title":"HQG-Net/README.md at main · ChunmingHe/HQG-Ne

Alibaba Group Holding Limited acquired HQG, Inc. from NetEase, Inc. for CNY 13 billion. -September 04, 2019 | MarketScreener

aba Group Holding Limited acquired HQG, Inc. from NetEase, Inc. for CNY 13 billion. -September 04, 2019 | MarketScreener

ad31dafdd13430c0.T_zW5hxGTcI57zWZaixF-zMYdzrtRU9gzgGtXmPyULA.NpKFgFgrHZF8qGyoGUAyy2pdH2CmNiMviEj8JhW_Btw1lZ-VaTEY8WymfA

Log inLog InForgot your password ?Remember

Log In

Or log in withGoogleGoogle Apple

Sign up Email Registration

Or log in withGoogleGoogle Apple

English (USA)

English (UK)

English (Canada)

English (India)

Deutsch (Deutschland)

Deutsch (Österreich)

Deutsch (Schweiz)

Español

Français (France)

Français (Suisse)

Italiano

Nederlands (Nederland)

Nederlands (België)

Log InForgot your password ?Remember

Log In

Not a member ? Email Registration

Or log in withGoogleGoogle Apple

Cancel

Markets

EquitiesTop CapitalizationUnited StatesNorth AmericaEuropeAsiaMiddle EastSector ResearchEarnings CalendarEquities AnalysisIndexesHomepageRankingsEuropeAmericaAsiaAfricaIndex AnalysisIndexes NewsS&P 500DOW JONESNASDAQ 100TSX COMPFTSE 100DAXCAC 40EURO STOXX 50Currency / ForexHomepageRankingsCurrency Cross RateCurrency ConverterForex AnalysisCurrencies NewsUSD / EURUSD / CADUSD / MXNUSD / BRLUSD / INRCommoditiesHomepageEnergyPrecious metalsAgricultureIndustrial MetalsLivestock and CattleGOLDCRUDE OIL (WTI)CRUDE OIL (BRENT)SILVERPLATINUMCryptocurrenciesHomepageRankingsChartsAnalysisNewsBITCOINETHEREUMBINANCE COINSOLANACARDANOCHAINLINKInterest RatesHomepageDeveloped NationsEmerging CountriesETFSummaryScreenerAnalysisNews

News

All NewsWorldUnited StatesEuropeNorth AmericaSouth AmericaAsiaAfricaMiddle EastEmergingCompaniesAll NewsAnalyst Reco.RumorsIPOsCapital Markets TransactionsNew ContractsProfit WarningsAppointmentsPress ReleasesSecurity TransactionsEarnings reportsNew marketsNew productsCorporate strategiesLegal risksShare buybacksMergers and acquisitionsCall TranscriptsGuidanceIndexesCurrency / ForexCommoditiesCryptocurrenciesETFInterest RatesEconomyThemesAsset ManagementActivismClimate and ESGCybersecurityGeopoliticsCentral BanksPrivate EquityInflationBusiness LeadersSectorsAll our articlesMost Read NewsHot News

Analysis

All AnalysisMust ReadEquitiesInterviewsIndexesCurrenciesCommoditiesETFCryptocurrenciesStock Trading StrategiesAllAmericaEuropeAsia

Our Shows

ShowsStrategyMust WatchSatirical CartoonToday's EditorialCrypt On ItBehind the numbers

Stock Picks

All our investmentsUnited StatesEuropeAsia, Pacific

Portfolios

Virtual PortfoliosUSA PortfolioEuropean PortfolioAsian Portfolio

Watchlists

My WatchlistsWatchlistsMy previous sessionMy most visitedMost popularInvestment StyleHomepageSmall capsGrowth stocksMomentum stocksQuality stocks at a reasonable priceYield stocksQuality stocksInvestment ThemesHomepageWaterRoboticsIn Vino VeritasThe Internet of ThingsCircular economyThe Golden Age of Video Games

Rankings

Top MoversTop MoversUnusual volumesNew Historical HighsNew Historical LowsLong TermTop FundamentalsTop FundamentalsSales growthEarnings GrowthProfitabilityFinancesRankings ValuationRankings ValuationP/E ratioEnterprise valueYieldTop ConsensusTop ConsensusAnalyst OpinionTarget priceEstimates RevisionsDivergenceTop TechnicalsTop RSIGAPSSTIMBreakoutsTrendsVolatilityTop ranking ESGTop ranking ESGEnvironmentSocialGovernanceVisibility Ranking

Screeners

Stock Screener HomeInvestment ThemesThe Golden Age of Video GamesSmart homeBiotechnology5GThe Cannabis IndustryBionic engineeringTechnical RankingsOversold stocksOverbought stocksClose to resistanceClose to supportAccumulation PhasesMost volatile stocksFundamental RankingsTop Investor RatingTop Trading RatingTop ConsensusTop GrowthTop DividendsLow valuationsMy ScreenersAll my stocksWatchlistsVirtual Portfolios

Tools

MarketScreener toolsStock ScreeneriPhone AppExpert toolsStock Screener PROPortfolio CreatorEvent ScreenerDynamic ChartEarnings CalendarEconomic CalendarCurrency ConverterProRealTime Trading

Our Services

Our subscriptionsOur Stock PicksStock ScreenerThematic Investment ListsMarketScreener PortfoliosEuropean PortfolioUSA PortfolioAsian Portfolio

Log in

Sign up

Homepage

Markets

Equities

Top CapitalizationUnited StatesNorth AmericaEuropeAsiaMiddle EastSector ResearchEarnings CalendarEquities Analysis

Indexes

HomepageRankingsEuropeAmericaAsiaAfricaIndex AnalysisIndexes NewsS&P 500DOW JONESNASDAQ 100TSX COMPFTSE 100DAXCAC 40EURO STOXX 50

Currency / Forex

HomepageRankingsCurrency Cross RateCurrency ConverterForex AnalysisCurrencies NewsUSD / EURUSD / CADUSD / MXNUSD / BRLUSD / INR

Commodities

HomepageEnergyPrecious metalsAgricultureIndustrial MetalsLivestock and CattleGOLDCRUDE OIL (WTI)CRUDE OIL (BRENT)SILVERPLATINUM

Cryptocurrencies

HomepageRankingsChartsAnalysisNewsBITCOINETHEREUMBINANCE COINSOLANACARDANOCHAINLINK

Interest Rates

HomepageDeveloped NationsEmerging Countries

ETF

SummaryScreenerAnalysisNews

News

All News

WorldUnited StatesEuropeNorth AmericaSouth AmericaAsiaAfricaMiddle EastEmerging

Companies

All NewsAnalyst Reco.RumorsIPOsCapital Markets TransactionsNew ContractsProfit WarningsAppointmentsPress ReleasesSecurity TransactionsEarnings reportsNew marketsNew productsCorporate strategiesLegal risksShare buybacksMergers and acquisitionsCall TranscriptsGuidance

Indexes

Currency / Forex

Commodities

Cryptocurrencies

ETF

Interest Rates

Economy

Themes

Asset ManagementActivismClimate and ESGCybersecurityGeopoliticsCentral BanksPrivate EquityInflationBusiness Leaders

Sectors

All our articles

Most Read News

Hot News

Analysis

All Analysis

Must Read

Equities

Interviews

Indexes

Currencies

Commodities

ETF

Cryptocurrencies

Stock Trading Strategies

AllAmericaEuropeAsia

Our Shows

Shows

Strategy

Must Watch

Satirical Cartoon

Today's Editorial

Crypt On It

Behind the numbers

Stock Picks

All our investments

United States

Europe

Asia, Pacific

Portfolios

Virtual Portfolios

USA Portfolio

European Portfolio

Asian Portfolio

Watchlists

My Watchlists

WatchlistsMy previous sessionMy most visitedMost popular

Investment Style

HomepageSmall capsGrowth stocksMomentum stocksQuality stocks at a reasonable priceYield stocksQuality stocks

Investment Themes

HomepageWaterRoboticsIn Vino VeritasThe Internet of ThingsCircular economyThe Golden Age of Video Games

Rankings

Top Movers

Top MoversUnusual volumesNew Historical HighsNew Historical LowsLong Term

Top Fundamentals

Top FundamentalsSales growthEarnings GrowthProfitabilityFinances

Rankings Valuation

Rankings ValuationP/E ratioEnterprise valueYield

Top Consensus

Top ConsensusAnalyst OpinionTarget priceEstimates RevisionsDivergence

Top Technicals

Top RSIGAPSSTIMBreakoutsTrendsVolatility

Top ranking ESG

Top ranking ESGEnvironmentSocialGovernance

Visibility Ranking

Screeners

Stock Screener Home

Investment Themes

The Golden Age of Video GamesSmart homeBiotechnology5GThe Cannabis IndustryBionic engineering

Technical Rankings

Oversold stocksOverbought stocksClose to resistanceClose to supportAccumulation PhasesMost volatile stocks

Fundamental Rankings

Top Investor RatingTop Trading RatingTop ConsensusTop GrowthTop DividendsLow valuations

My Screeners

All my stocksWatchlistsVirtual Portfolios

Tools

MarketScreener tools

Stock ScreeneriPhone App

Expert tools

Stock Screener PROPortfolio CreatorEvent Screener

Dynamic Chart

Earnings Calendar

Economic Calendar

Currency Converter

ProRealTime Trading

Our Services

Our subscriptions

Our Stock Picks

Stock Screener

Thematic Investment Lists

MarketScreener Portfolios

European PortfolioUSA PortfolioAsian Portfolio Switch edition

English (USA)

English (UK)

English (Canada)

English (India)

Deutsch (Deutschland)

Deutsch (Österreich)

Deutsch (Schweiz)

Español

Français (France)

Français (Suisse)

Italiano

Nederlands (Nederland)

Nederlands (België)

ALIBABA GROUP HOLDING LIMITED Add to a listAdd to a listTo use this feature you must be a memberLog inSign upBackPDF Report

Alibaba Group Holding Limited

Equities

BABA

US01609W1027

Internet Services

Market Closed -

Nyse

Other stock markets

04:00:42 2024-03-06 pm EST

After market

07:49:16 pm

73.71

USD

+2.28%

74.05

+0.46%

Mar. 06

JD.com Reports Higher Quarterly Profit and Revenue Amid Weak Economy

DJ

Mar. 06

HK stocks rebound, China flat as investors await signals from parliament meeting

RE

Summary

Quotes

Charts

News

Ratings

Calendar

Company

Financials

Consensus

Revisions

Funds and ETFs

Alibaba Group Holding Limited acquired HQG, Inc. from NetEase, Inc. for CNY 13 billion.

September 04, 2019

Share

Alibaba Group Holding Limited (NYSE:BABA) agreed to acquire HQG, Inc. from NetEase, Inc. (NasdaqGS:NTES) for CNY 13 billion on September 5, 2019. The consideration is comprised of CNY 10.01 billion in cash payable to NetEase, which includes the repayment of certain loans made by NetEase to HQG and to HQG equity award holders, as well as approximately 14.3 million Alibaba ordinary shares, equivalent to approximately 1.8 million American depositary shares issued to NetEase and a contingent cash consideration not exceeding CNY 700 million payable upon the satisfaction of certain non-compete provisions by the selling equity holders. The purchase price is subject to adjustments and certain payment conditions under the terms of the definitive agreements. In a related transaction, Alibaba and NetEase have entered into a definitive agreement for Alibaba, together with Yunfeng, to invest approximately $700 million in NetEase Cloud Music in its latest round of financing. Alibaba plans for HQG, Inc. to continue to operate independently under its current brand. Tmall Import and Export General Manager Alvin Liu will serve as HQG, Inc.'s new Chief Executive Officer. The transaction is subject to regulatory approval.

Tim Gardner and Chris Welty of Weil, Gotshal & Manges LLP, Hong Kong acted as legal advisors for Alibaba Group Holding Limited. Paul W. Boltz of Gibson, Dunn & Crutcher LLP acted as legal advisor to NetEase, Inc. Jonathan Zhou of Fangda Partners acted as the legal advisor to Alibaba Group Holding Limited.

Alibaba Group Holding Limited (NYSE:BABA) completed the acquisition of HQG, Inc. from NetEase, Inc. (NasdaqGS:NTES) on September 5, 2019. Share

© S&P Capital IQ - 2019

Latest news about Alibaba Group Holding Limited

JD.com Reports Higher Quarterly Profit and Revenue Amid Weak Economy

Mar. 06

DJ

HK stocks rebound, China flat as investors await signals from parliament meeting

Mar. 06

RE

HK stocks rebound, China flat as investors await signals from parliament meeting

Mar. 05

RE

Alibaba Leads Financing Package for Chinese AI Startup MiniMax

Mar. 05

MT

Global markets live: Bayer, Target, Gitlab, Tesla, Amazon...

Mar. 05

Alibaba Cloud Slashes Prices Further

Mar. 04

MT

Chairman at Alibaba's Food Delivery, Mapping Units Steps Down

Mar. 04

MT

Shanghai Xiyu Jizhi Technology Co., Ltd. announced that it has received $600 million in funding from Alibaba Group Holding Limited

Mar. 02

CI

Head of Alibaba's Struggling Food-Delivery Unit Steps Down

Mar. 01

DJ

Alibaba Slashes Prices of Core Cloud Products by Up To 55% to Boost China AI Market

Feb. 29

MT

Apple's iPhone 15 Models Prices Reduced at Resellers in China

Feb. 29

MT

Global markets live: HP, Moncler, Snowflake, Salesforce, Duolingo...

Feb. 29

News Highlights : Top Company News of the Day - Thursday at 11 AM ET

Feb. 29

DJ

News Highlights : Top Company News of the Day - Thursday at 9 AM ET

Feb. 29

DJ

Chinese retailers further discount iPhone 15

Feb. 29

RE

News Highlights : Top Company News of the Day - Thursday at 7 AM ET

Feb. 29

DJ

Alibaba's Cainiao to Build Management System for Spotter's Warehouses

Feb. 29

MT

North American Morning Briefing : Fed's Preferred Inflation Gauge in the Spotlight

Feb. 29

DJ

News Highlights : Top Company News of the Day - Thursday at 5 AM ET

Feb. 29

DJ

News Highlights : Top Company News of the Day - Thursday at 3 AM ET

Feb. 29

DJ

News Highlights : Top Company News of the Day - Thursday at 1 AM ET

Feb. 29

DJ

Alibaba Cuts China Cloud Prices to Rekindle Division's Growth

Feb. 29

DJ

Alibaba Cloud announces steepest price cut in race for AI customers

Feb. 28

RE

China's Alibaba Cloud rolls out price cuts of up to 55% on cloud products

Feb. 28

RE

Baidu Posts Record Revenue Amid Search for New Growth Engines -- Update

Feb. 28

DJ

Chart Alibaba Group Holding Limited DurationAuto.2 months3 months6 months9 months1 year2 years5 years10 yearsMax.PeriodDayWeek

More charts

Company Profile

Alibaba Group Holding Limited is the leading online Chinese marketplace. The group provides computing platform allowing individuals and professionals to make their buying and selling transactions of goods and services. The activity is organized around 3 areas:

- operation of e-commerce platform: Websites holding (Alibaba.com, Taobao.com, Tmall.com, Juhuasuan.com, Aliexpress.com, 1688.com, etc.);

- online payment services: services ensured through the Alipay.com platform;

- other: development of price comparison, interface and Web application portals, dematerialized management platforms of computing infrastructure, etc.

Sector

Internet Services

Calendar

2024-05-23

- Q4 2024 Earnings Release (Projected)

More about the company

Income Statement Evolution

More financial data

Analysis / Opinion

Alibaba Group Holding Limited : Investors are disappointed

November 21, 2023 at 10:25 am EST

IPO to watch: Alibaba's logistics arm files for Hong Kong listing

September 27, 2023 at 05:01 am EDT

More Strategies

Ratings for Alibaba Group Holding Limited

Trading Rating

Investor Rating

ESG Refinitiv

C-More Ratings

Analysts' Consensus

SellBuyMean consensusBUYNumber of Analysts45Last Close Price

530.5

CNYAverage target price

780.3

CNYSpread / Average Target+47.08%ConsensusEPS Revisions

Estimates Revisions

Quarterly earnings - Rate of surprise

Company calendar

Sector

E-commerce & Auction Services

1st Jan change

Capi.

ALIBABA GROUP HOLDING LIMITED -4.90% 185B

PDD HOLDINGS INC. -20.28% 155B

SHOPIFY INC. -4.99% 95.26B

MERCADOLIBRE, INC. -2.92% 77.34B

MEITUAN INC. +4.27% 70.18B

COPART, INC. +11.47% 52.52B

EBAY INC. +15.86% 26.18B

RAKUTEN GROUP, INC. +33.54% 11.75B

VIPSHOP HOLDINGS LIMITED -0.06% 9.63B

GLOBAL-E ONLINE LTD. -17.79% 5.35B

E-commerce & Auction Services

Indexes

Europe

America

Asia 

 

 

 

More Indexes

My Watchlist

 

My listsRankings

 

More Top / Flop

Rankings

 

More Top / Flop

Currency / ForexForexCommoditiesCommoditiesCryptocurrenciesCryptocurrenciesStockEquities

Stock Alibaba Group Holding Limited - Nyse News Alibaba Group Holding LimitedAlibaba Group Holding Limited acquired HQG, Inc. from NetEase, Inc. for CNY 13 billion.

Best financial portal

+951% of historicalperformance

More than 20 yearsat your side

+

950,000

members

Quick & easycancellation

Our Expertsare here for you

OUR EXPERTS ARE HERE FOR YOUMonday - Friday 9am-12pm / 2pm-6pm GMT + 1Contact us

Legal information

|

Cookie settings

|

MarketScreener Blog

|

Copyright © 2024 Surperformance. All rights reserved.

Stock quotes are provided by Factset, Morningstar and S&P Capital IQ

-40% Limited-time offer: Our subscriptions help you unlock the best investment opportunities.

SIGN UP NOW

<

Outdoor & Tactics | High Quality Gear | Home

Outdoor & Tactics | High Quality Gear | Home

Menu

Home

Taktische Ausrüstung

Tragesysteme

Taschen

Magazintaschen

Granatentaschen

Medictaschen

Mehrzwecktaschen

Zubehörtaschen

Gurtsysteme

Schutzwesten

Zubehör

Elektronik

Kleinteile/ Waffenzubehör

Neuheiten

Bekleidung

Oberbekleidung

Hosen

Kopfbedeckung

Neuheiten

Rucksäcke

Rucksäcke bis 35 Liter

Rucksäcke bis 65 Liter

Rucksäcke > 65 Liter

Duffle Bags & Taschen

Zubehör

Neuheiten

Schuhe

Stiefel

Knöchelhoch

Halbschuh

Zubehör

Neuheiten

SALE

Taktische Ausrüstung

Bekleidung

Grey Sale

Schuhe

JavaScript scheint in Ihrem Browser deaktiviert zu sein.

Sie müssen JavaScript in Ihrem Browser aktivieren, um alle Funktionen in diesem Shop nutzen zu können.

+49 (0)8042-50 390-200

info@hqg.de

Account

Mein Benutzerkonto

Mein Warenkorb

Zur Kasse

Anmelden

Deutsch

Deutsch

English

High Quality Gear

Menu

Taktische Ausrüstung

Tragesysteme

Taschen

Magazintaschen

Granatentaschen

Medictaschen

Mehrzwecktaschen

Zubehörtaschen

Gurtsysteme

Schutzwesten

Zubehör

Elektronik

Kleinteile/ Waffenzubehör

Neuheiten

Bekleidung

Oberbekleidung

Hosen

Kopfbedeckung

Neuheiten

Rucksäcke

Rucksäcke bis 35 Liter

Rucksäcke bis 65 Liter

Rucksäcke > 65 Liter

Duffle Bags & Taschen

Zubehör

Neuheiten

Schuhe

Stiefel

Knöchelhoch

Halbschuh

Zubehör

Neuheiten

SALE

Taktische Ausrüstung

Bekleidung

Grey Sale

Schuhe

0

Sie haben keine Artikel im Warenkorb.

Menu

Home

Taktische Ausrüstung

Tragesysteme

Taschen

Magazintaschen

Granatentaschen

Medictaschen

Mehrzwecktaschen

Zubehörtaschen

Gurtsysteme

Schutzwesten

Zubehör

Elektronik

Kleinteile/ Waffenzubehör

Neuheiten

Bekleidung

Oberbekleidung

Hosen

Kopfbedeckung

Neuheiten

Rucksäcke

Rucksäcke bis 35 Liter

Rucksäcke bis 65 Liter

Rucksäcke > 65 Liter

Duffle Bags & Taschen

Zubehör

Neuheiten

Schuhe

Stiefel

Knöchelhoch

Halbschuh

Zubehör

Neuheiten

SALE

Taktische Ausrüstung

Bekleidung

Grey Sale

Schuhe

Alle Kategorien

Taktische Ausrüstung   Tragesysteme   Taschen      Magazintaschen      Granatentaschen      Medictaschen      Mehrzwecktaschen      Zubehörtaschen   Gurtsysteme    Schutzwesten   Zubehör      Elektronik      Kleinteile/ Waffenzubehör    NeuheitenBekleidung    Oberbekleidung   Hosen   Kopfbedeckung   NeuheitenRucksäcke   Rucksäcke bis 35 Liter    Rucksäcke bis 65 Liter    Rucksäcke > 65 Liter    Duffle Bags & Taschen    Zubehör    NeuheitenSchuhe   Stiefel    Knöchelhoch   Halbschuh   Zubehör   NeuheitenSALE   Taktische Ausrüstung   Bekleidung    Grey Sale   Schuhe

Sie befinden sich auf einem Online-Shop in Deutschland. Die angezeigten Preise enthalten daher 19% MwSt und werden im Zuge des Bestellvorganges auf Basis der EU-Mehrwertsteuervorschriften für Fernverkäufe mit dem MwSt-Satz Ihrer Lieferanschrift umgerechnet.

Verstanden

GEAR UPGEAR UPGEAR UPGEAR UP NOW

GEAR UPGET YOURS NOW IN

EMPFEHLUNGEN des Monats

NEU

Lindnerhof

SCHIESSSACK LT346

79,95 €

NEU

Lindnerhof

SCHIESSSACK ALCANTARA SCHWER LT349

119,95 €

NEU

Lindnerhof

SCHIESSSACK SCHWER LT348

79,95 €

AUCH GEIL

Lindnerhof

SCHIESSSACK LT644

29,95 €

10% Behördenrabattsichern

Einfach Rabatt sichern mit Kopie des Behördenausweises

Marken

Der Shop für Spezialisten

SERVICE

Zahlungsarten

Rücksendungen

Versandkosten

Behördenrabatt

Newsletter

Farbmatrix

ÜBER HQG

Unternehmen

Philosophie

Kontakt

RECHTLICHES

AGB

Datenschutzerklärung

Kundeninformationen/Ges. Pflichtinformationen

Widerrufsrecht

Widerrufsformular

Impressum

FOLLOW US

ZAHLUNGSMÖGLICHKEITEN

KreditkarteVorkasse

©2021 HQG by Lindnerhof-Taktik GmbH