苹果版Bitpie最新版app|popc
POPC;两性离子磷脂 - 知乎
POPC;两性离子磷脂 - 知乎切换模式写文章登录/注册POPC;两性离子磷脂biofount科研试剂1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphorylcholine (POPC)是一种磷脂,在 sn-1 和 sn-2 位置分别含有 16:0 和 18:1 的脂肪酸。它属于一类磷脂,是生物膜的主要成分。该化合物可用于脂质体生产,以研究脂质双层的性质。图1.POPC化学结构POPC基础信息产品名:1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphorylcholine;POPC;1,2-POPCCAS号:26853-31-6结构式:CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-])OCC[N+](C)(C)C)OC(=O)CCCCCCC/C=C\CCCCCCCC分子式:C42H82NO8P分子量:760.076溶解度:Ethanol: 25mg/ml性状:白色至灰白色固体粉末储藏条件:储存温度 -20°C——biofount范德生物(货号:JT15156)发布于 2023-06-01 13:43・IP 属地天津生物科技生化试剂盒赞同 1添加评论分享喜欢收藏申请
脂质体膜材-POPC (16:0-18:1 PC) 1-棕榈酰基-2-油酰基磷脂酰胆碱_产品
脂质体膜材-POPC (16:0-18:1 PC) 1-棕榈酰基-2-油酰基磷脂酰胆碱_产品
新闻
体育
汽车
房产
旅游
教育
时尚
科技
财经
娱乐
更多
母婴
健康
历史
军事
美食
文化
星座
专题
游戏
搞笑
动漫
宠物
无障碍
关怀版
脂质体膜材-POPC (16:0-18:1 PC) 1-棕榈酰基-2-油酰基磷脂酰胆碱
2021-09-28 17:46
来源:
星戈瑞V荧光
原标题:脂质体膜材-POPC (16:0-18:1 PC) 1-棕榈酰基-2-油酰基磷脂酰胆碱
1-Palmitoyl-2-oleoyl-sn-glycero-3-PC (POPC) 是一种磷脂,是生物膜的主要成分。1-Palmitoyl-2-oleoyl-sn-glycero-3-PC 用于脂质体的制备以及脂质双层的特性的研究。
POPC (16:0-18:1 PC) 1-棕榈酰基-2-油酰基磷脂酰胆碱
英文名称:1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphorylcholine
化学名:1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱
别名:POPC (16:0-18:1 PC)
CAS: 26853-31-6
级别:试剂
分子量:760.1
分子式:C42H82NO8P
质量:759.577820
PSA:121.00000
LogP:11.42
产品特性:白色粉末
适用:脂质体,膜材
保存条件:-20℃,遮光密闭
纯度:98%+
展开全文
保存时间:1年
用途:仅用于科研,不能用于人体
瑞禧生物针对以下常用磷脂类产品长期做6-7折的折扣活动,该类产品我们长期屯有现货,并确保品质和纯度。
DSPE 6折
DPPE 6折
DMPE 6折
DOPE 7折
DPPC 7折
DSPC 7折
DMPC 7折
DOPC 7折
POPC 7折
DSPG 6折
DPPG 6折
DMPG 6折
DPPA 7折
DSPA 7折
DOTAP 6折
DSPE-PEG2000-FA 6折
DSPE-PEG2000-CRGD 6折
DSPE-PEG2000-NHS 7折
DSPE-PEG2000-NH2 7折
DSPE-PEG2000-MAL 7折
DSPE-PEG2000-COOH 7折
DSPE-PEG2000-FITC 7折
以上资料来自小编西安瑞禧生物YQ2021.9返回搜狐,查看更多
责任编辑:
平台声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。
阅读 ()
推荐阅读
16:0-18:1 PC (POPC)
16:0-18:1 PC (POPC)
About Us
Avanti Awards in Lipids
Road Shows
Products
Divisions
cGMP Manufacturing
Adjuvants
Lipidomics
Formulations
LNP Technologies
Research Products
Tech Support
FAQs
References
Recent Applications
Handbook Of Lipid Bilayers
Useful Reference Texts
Links
Liposome Preparation
Lipids For Liposome Formation
Preparation of Multilamellar Liposomes (LMV)
Preparing Large, Unilamellar Vesicles by Extrusion (LUVET)
Giant Vesicle Preparation
Bicelle Preparation
Current Applications of Liposome Formulations
Lipid-DNA Preparation (Transfection)
Preparation of Cationic Liposomes & Transfection of Cells
Procedure for Preparation of Cationic Lipid/Oligomer Complex
Storage & Handling of Lipids
Analytical Procedures
Determination of Phospholipid Oxidation by UV/VIS Spectroscopy
Thin Layer Chromatography (TLC) Analysis of Phospholipids
Procedure for TLC of synthetic PIPs
TLC Solvent Systems – Lipid Migration
Detection Methods for Thin Layer Chromatography
Fatty Acid Analysis of Phospholipids by GC/FID
Determination of Total Phosphorus
Fatty Acid Composition
Physical Properties
Phase Transition Temperatures for Glycerophospholipids
Miscibility of Phospholipid Binary Mixtures
Ionization Constants Of Phospholipids
Critical Micelle Concentrations (CMCs)
Contract Manufacturing & Packaging
Lipid Extraction
Ordering Information
Limited Warranty
Blog
Contact
1-800-227-0651
Careers
Login
Login
About Us
Avanti Awards in Lipids
Road Shows
Products
Divisions
cGMP Manufacturing
Adjuvants
Lipidomics
Formulations
LNP Technologies
Research Products
Tech Support
FAQs
References
Liposome Preparation
Lipid-DNA Preparation (Transfection)
Storage & Handling of Lipids
Analytical Procedures
Fatty Acid Composition
Physical Properties
Contract Manufacturing & Packaging
Lipid Extraction
Ordering Information
Limited Warranty
Blog
Contact
Section Menu
Products
Phospholipids
Phospholipids
Bis(Monoacylglycero)Phosphate (BMP)
Cardiolipin
Ether Lipids
Inverted Headgroups
IsoPure: Isomerically Pure Mixed-Acyl Glycerophospholipids
Oxidized Lipids
PA, LPA, & Cyclic LPA
PAF & PAF Analogs
PC & LPC
PE & LPE
PG & LPG
PI, PIP & LPI
PS & LPS
Sterol-Modified Phospholipids
16:0-18:1 PC (POPC)
850457 | 16:0-18:1 PC (POPC)
1-palmitoyl-2-oleoyl-glycero-3-phosphocholine
Chloroform
Size
SKU
Packaging
Price
25mg
850457C-25mg
850457C-25mg
1 x 25mg 10mg/mL 2.5mL
$94.25
94.25
200mg
850457C-200mg
850457C-200mg
2 x 100mg 25mg/mL 4mL
$246.00
246
500mg
850457C-500mg
850457C-500mg
5 x 100mg 25mg/mL 4mL
$435.00
435
1g
850457C-1g
850457C-1g
2 x 500mg 25mg/mL 20mL
$623.70
623.7
Powder
Size
SKU
Packaging
Price
25mg
850457P-25mg
850457P-25mg
1 x 25mg
$94.25
94.25
200mg
850457P-200mg
850457P-200mg
2 x 100mg
$246.00
246
500mg
850457P-500mg
850457P-500mg
5 x 100mg
$435.00
435
1g
850457P-1g
850457P-1g
1 x 1g
$623.70
623.7
Please Confirm Your Location
Effective March 1, 2018, Merck KGaA, Darmstadt, Germany* is the exclusive Distributor of Avanti Polar Lipids, Inc. Research Products for all countries except the United States. For product pricing and order placement, please click on the appropriate Location Box below.
For customers located outside the United States, you will be redirected to www.sigmaaldrich.com/avanti prior to completing your purchase. Thank you for your continued business and support of Avanti Polar Lipids, Inc!
*The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada
United States
Outside U.S.
Custom Packaging
${amount} ${sku} - 16:0-18:1 PC (POPC)
Custom Packaging:
${option.text}
Base Price:
${originalprice|money}
Custom Packaging Surcharge:
${custompackagingsurcharge|money}
Custom Packaging (${custompackaging} @ $4 per aliquot):
${custompackagingperunit|money}
Item Total:
${totalprice|money}
(Sales Tax may apply)
Custom packaging is calculated at $4.00 per aliquot + $100.00 surcharge.For all other custom packaging options not listed above, please contact us for a quote
Info
16:0-18:1 PC (POPC)
1-palmitoyl-2-oleoyl-glycero-3-phosphocholine
POPC is typically considered one of the model lipids for biophysical experiments. The fatty acid composition, i.e., saturated chain in the sn-1 position and unsaturated chain in the sn-2 position, mimics mammalian phospholipid composition. Since the major constituent in Egg PC is 1-palmitoyl-2-oleoyl PC, POPC is an excellent synthetic substitute for EPC.
Data
Hygroscopic
Yes
Light Sensitive
No
Molecular Formula
C42H82NO8P
Percent Composition
C 66.37%, H 10.87%, N 1.84%, O 16.84%, P 4.08%
Purity
>99%
Stability
1 Year
Storage Temperature
-20°C
CAS Number
26853-31-6 CAS Registry Number is a Registered Trademark of the American Chemical Society
Formula Weight
760.076
Exact Mass
759.578
Synonyms
1-hexadecanoyl-2--(9Z-octadecenoyl)-sn-glycero-3-phosphocholine
POPC
PC(16:0/18:1(9Z))
Transition Temp
-2°C
Solubility in Different Solvents
Soluble in ethanol at 5mg/mL, soluble in DMSO at 5mg/mL, soluble in Chloroform:Methanol:Water at 5mg/mL
Downloads
ChemDraw File
3D Structure
Structure
Safety Data Sheet
References
Powered by Bioz See more details on Bioz
Olżyńska A, Kulig W, Mikkolainen H, Czerniak T, Jurkiewicz P, Cwiklik L, Rog T, Hof M, Jungwirth P, Vattulainen I. Tail-Oxidized Cholesterol Enhances Membrane Permeability for Small Solutes. Langmuir. 2020 Aug 28. doi: 10.1021/acs.langmuir.0c01590. Epub ahead of print. PMID: 32804507.
PubMed ID: 32804507
Sun S, Liu C, Rodriguez Melendez D, Yang T, Cremer PS. Immobilization of Phosphatidylinositides Revealed by Bilayer Leaflet Decoupling. J Am Chem Soc. 2020 Jul 20. doi: 10.1021/jacs.0c03800. Epub ahead of print. PMID: 32687699.
PubMed ID: 32687699
Mainali L, O'Brien WJ, Timsina R. Interaction of Alpha-Crystallin with Phospholipid Membranes. Curr Eye Res. 2020 Jul 12:1-10. doi: 10.1080/02713683.2020.1786131. Epub ahead of print. PMID: 32564617.
PubMed ID: 32564617
Gironi B, Kahveci Z, McGill B, Lechner BD, Pagliara S, Metz J, Morresi A, Palombo F, Sassi P, Petrov PG. Effect of DMSO on the Mechanical and Structural Properties of Model and Biological Membranes. Biophys J. 2020 Jul 21;119(2):274-286. doi: 10.1016/j.bpj.2020.05.037. Epub 2020 Jun 15. PMID: 32610089; PMCID: PMC7376087.
PubMed ID: 32610089
Ventura AE, Varela ARP, Dingjan T, Santos TCB, Fedorov A, Futerman AH, Prieto M, Silva LC. Lipid domain formation and membrane shaping by C24-ceramide. Biochim Biophys Acta Biomembr. 2020 Jun 18;1862(10):183400. doi: 10.1016/j.bbamem.2020.183400. Epub ahead of print. PMID: 32565121.
PubMed ID: 32565121
Lins-Austin B, Patel S, Mietzsch M, Brooke D, Bennett A, Venkatakrishnan B, Van Vliet K, Smith AN, Long JR, McKenna R, Potter M, Byrne B, Boye SL, Bothner B, Heilbronn R, Agbandje-McKenna M. Adeno-Associated Virus (AAV) Capsid Stability and Liposome Remodeling During Endo/Lysosomal pH Trafficking. Viruses. 2020 Jun 20;12(6):E668. doi: 10.3390/v12060668. PMID: 32575696.
PubMed ID: 32575696
Tahirbegi B, Magness AJ, Piersimoni ME, Knöpfel T, Willison KR, Klug DR, Ying L. A Novel Aβ40 Assembly at Physiological Concentration. Sci Rep. 2020 Jun 11;10(1):9477. doi: 10.1038/s41598-020-66373-3. PMID: 32528074; PMCID: PMC7289798.
PubMed ID: 32528074
Sánchez-López E, Paús A, Pérez-Pomeda I, Calpena A, Haro I, Gómara MJ. Lipid Vesicles Loaded with an HIV-1 Fusion Inhibitor Peptide as a Potential Microbicide. Pharmaceutics. 2020 May 31;12(6):E502. doi: 10.3390/pharmaceutics12060502. PMID: 32486415.
PubMed ID: 32486415
Zhao J, Hu J. Self-Association of Purified Reconstituted ER Luminal Spacer Climp63. Front Cell Dev Biol. 2020 Jun 16;8:500. doi: 10.3389/fcell.2020.00500. PMID: 32612999; PMCID: PMC7308479.
PubMed ID: 32612999
Hedegaard SF, Bruhn DS, Khandelia H, Cárdenas M, Nielsen HM. Shuffled lipidation pattern and degree of lipidation determines the membrane interaction behavior of a linear cationic membrane-active peptide. J Colloid Interface Sci. 2020 Jun 3;578:584-597. doi: 10.1016/j.jcis.2020.05.121. Epub ahead of print. PMID: 32544630.
PubMed ID: 32544630
Olsman M, Sereti V, Andreassen K, Snipstad S, van Wamel A, Eliasen R, Berg S, Urquhart AJ, Andresen TL, Davies CL. Ultrasound-mediated delivery enhances therapeutic efficacy of MMP sensitive liposomes. J Control Release. 2020 Jul 2;325:121-134. doi: 10.1016/j.jconrel.2020.06.024. Epub ahead of print. PMID: 32621827.
PubMed ID: 32621827
Paananen RO, Viitaja T, Olżyńska A, Ekholm FS, Moilanen J, Cwiklik L. Interactions of polar lipids with cholesteryl ester multilayers elucidate tear film lipid layer structure. Ocul Surf. 2020 Jun 17:S1542-0124(20)30098-7. doi: 10.1016/j.jtos.2020.06.001. Epub ahead of print. PMID: 32562857.
PubMed ID: 32562857
Cörek E, Rodgers G, Siegrist S, Einfalt T, Detampel P, Schlepütz CM, Sieber S, Fluder P, Schulz G, Unterweger H, Alexiou C, Müller B, Puchkov M, Huwyler J. Shedding Light on Metal-Based Nanoparticles in Zebrafish by Computed Tomography with Micrometer Resolution. Small. 2020 Jun 22:e2000746. doi: 10.1002/smll.202000746. Epub ahead of print. PMID: 32567135.
PubMed ID: 32567135
Wetzel L, Blanchard S, Rama S, Beier V, Kaufmann A, Wollert T. TECPR1 promotes aggrephagy by direct recruitment of LC3C autophagosomes to lysosomes. Nat Commun. 2020 Jun 12;11(1):2993. doi: 10.1038/s41467-020-16689-5. PMID: 32532970; PMCID: PMC7293217.
PubMed ID: 32532970
Hauseman ZJ, Harvey EP, Newman CE, Wales TE, Bucci JC, Mintseris J, Schweppe DK, David L, Fan L, Cohen DT, Herce HD, Mourtada R, Ben-Nun Y, Bloch NB, Hansen SB, Wu H, Gygi SP, Engen JR, Walensky LD. Homogeneous Oligomers of Pro-apoptotic BAX Reveal Structural Determinants of Mitochondrial Membrane Permeabilization. Mol Cell. 2020 Jul 2;79(1):68-83.e7. doi: 10.1016/j.molcel.2020.05.029. Epub 2020 Jun 12. PMID: 32533918.
PubMed ID: 32533918
Alexander TE, Smith IM, Lipsky ZW, Lozeau LD, Camesano TA. Role of lipopolysaccharides and lipoteichoic acids on C-Chrysophsin-1 interactions with model Gram-positive and Gram-negative bacterial membranes. Biointerphases. 2020 May 26;15(3):031007. doi: 10.1116/1.5130774. PMID: 32456440.
PubMed ID: 32456440
Martins DB, Pacca CC, da Silva AMB, de Souza BM, de Almeida MTG, Palma MS, Arcisio-Miranda M, Dos Santos Cabrera MP. Comparing activity, toxicity and model membrane interactions of Jelleine-I and Trp/Arg analogs: analysis of peptide aggregation. Amino Acids. 2020 May;52(5):725-741. doi: 10.1007/s00726-020-02847-y. Epub 2020 May 4. PMID: 32367434.
PubMed ID: 32367434
Rottet S, Iqbal S, Beales PA, Lin A, Lee J, Rug M, Scott C, Callaghan R. Characterisation of Hybrid Polymersome Vesicles Containing the Efflux Pumps NaAtm1 or P-Glycoprotein. Polymers (Basel). 2020 May 3;12(5):1049. doi: 10.3390/polym12051049. PMID: 32375237; PMCID: PMC7284524.
PubMed ID: 32375237
Caviglia C, Garbarino F, Canali C, Melander F, Raiteri R, Ferrari G, Sampietro M, Heiskanen A, Andresen TL, Zór K, Emnéus J. Monitoring cell endocytosis of liposomes by real-time electrical impedance spectroscopy. Anal Bioanal Chem. 2020 May 25. doi: 10.1007/s00216-020-02592-x. Epub ahead of print. PMID: 32451643.
PubMed ID: 32451643
Dey S, Das A, Dey A, Maiti S. Membrane affinity of individual toxic protein oligomers determined at the single-molecule level. Phys Chem Chem Phys. 2020 Jun 2. doi: 10.1039/d0cp00450b. Epub ahead of print. PMID: 32483579.
PubMed ID: 32483579
Roussel G, White SH. The SecA ATPase motor protein binds to Escherichia coli liposomes only as monomers. Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183358. doi: 10.1016/j.bbamem.2020.183358. Epub 2020 May 19. PMID: 32416191.
PubMed ID: 32416191
de Oliveira C, Khatua B, El-Kurdi B, Patel K, Mishra V, Navina S, Grim BJ, Gupta S, Belohlavek M, Cherry B, Yarger J, Green MD, Singh VP. Thermodynamic interference with bile acid demicelleization reduces systemic entry and injury during cholestasis. Sci Rep. 2020 May 21;10(1):8462. doi: 10.1038/s41598-020-65451-w. PMID: 32439972; PMCID: PMC7242474.
PubMed ID: 32439972
Mori K, Obara T, Seki N, Miyamoto M, Naganuma T, Kitamura T, Kihara A. Catalytic residues, substrate specificity, and role in carbon starvation of the 2-hydroxy FA dioxygenase Mpo1 in yeast. J Lipid Res. 2020 Apr 29:jlr.RA120000803. doi: 10.1194/jlr.RA120000803. Epub ahead of print. PMID: 32350077.
PubMed ID: 32350077
Trapani G, Caruso VCL, Cucci LM, Attanasio F, Tabbì G, Forte G, La Mendola D, Satriano C. Graphene Oxide Nanosheets Tailored With Aromatic Dipeptide Nanoassemblies for a Tuneable Interaction With Cell Membranes. Front Bioeng Biotechnol. 2020 May 8;8:427. doi: 10.3389/fbioe.2020.00427. PMID: 32457892; PMCID: PMC7227426.
PubMed ID: 32457892
Matos ALL, Kudruk S, Moratz J, Heflik M, Grill D, Ravoo BJ, Gerke V. Membrane Binding Promotes Annexin A2 Oligomerization. Cells. 2020 May 8;9(5):1169. doi: 10.3390/cells9051169. PMID: 32397265; PMCID: PMC7291239.
PubMed ID: 32397265
Milioni D, Mateos-Gil P, Papadakis G, Tsortos A, Sarlidou O, Gizeli E. Acoustic Methodology for Selecting Highly Dissipative Probes for Ultrasensitive DNA Detection. Anal Chem. 2020 Jun 16;92(12):8186-8193. doi: 10.1021/acs.analchem.0c00366. Epub 2020 Jun 5. PMID: 32449355.
PubMed ID: 32449355
Hu XY, Gao J, Chen FY, Guo DS. A host-guest drug delivery nanosystem for supramolecular chemotherapy. J Control Release. 2020 May 8;324:124-133. doi: 10.1016/j.jconrel.2020.05.008. Epub ahead of print. PMID: 32430277.
PubMed ID: 32430277
Komin A, Bogorad MI, Lin R, Cui H, Searson PC, Hristova K. A peptide for transcellular cargo delivery: Structure-function relationship and mechanism of action. J Control Release. 2020 May 28:S0168-3659(20)30307-2. doi: 10.1016/j.jconrel.2020.05.030. Epub ahead of print. PMID: 32474121.
PubMed ID: 32474121
Yu C, Zhao J, Yan L, Qi Y, Guo X, Lou Z, Hu J, Rao Z. Structural insights into G domain dimerization and pathogenic mutation of OPA1. J Cell Biol. 2020 Jul 6;219(7):e201907098. doi: 10.1083/jcb.201907098. PMID: 32379273.
PubMed ID: 32379273
Xu X, Hou B, Fulzele A, Masubuchi T, Zhao Y, Wu Z, Hu Y, Jiang Y, Ma Y, Wang H, Bennett EJ, Fu G, Hui E. PD-1 and BTLA regulate T cell signaling differentially and only partially through SHP1 and SHP2. J Cell Biol. 2020 Jun 1;219(6):e201905085. doi: 10.1083/jcb.201905085. PMID: 32437509; PMCID: PMC7265324.
PubMed ID: 32437509
Gault J, Liko I, Landreh M, Shutin D, Bolla JR, Jefferies D, Agasid M, Yen HY, Ladds MJGW, Lane DP, Khalid S, Mullen C, Remes PM, Huguet R, McAlister G, Goodwin M, Viner R, Syka JEP, Robinson CV. Combining native and 'omics' mass spectrometry to identify endogenous ligands bound to membrane proteins. Nat Methods. 2020 May;17(5):505-508. doi: 10.1038/s41592-020-0821-0. Epub 2020 May 4. PMID: 32371966.
PubMed ID: 32371966
Phan MD, Lee KY, Lee J, Satija SK, Shin K. The Effect of Cholesterol on Membrane Binding and Self-Assembly of Collagen Fibrils. Langmuir. 2020 May 27. doi: 10.1021/acs.langmuir.0c00574. Epub ahead of print. PMID: 32460498.
PubMed ID: 32460498
Guyot L, Hartmann L, Mohammed-Bouteben S, Caro L, Wagner R. Preparation of Recombinant Membrane Proteins from Pichia pastoris for Molecular Investigations. Curr Protoc Protein Sci. 2020 Jun;100(1):e104. doi: 10.1002/cpps.104. PMID: 32289210.
PubMed ID: 32289210
Zhou X, Dalai P, Sahai N. Semipermeable Mixed Phospholipid-Fatty Acid Membranes Exhibit K+/Na+ Selectivity in the Absence of Proteins. Life (Basel). 2020 Apr 14;10(4):39. doi: 10.3390/life10040039. PMID: 32295197; PMCID: PMC7235748.
PubMed ID: 32295197
Boban Z, Puljas A, Kovač D, Subczynski WK, Raguz M. Effect of Electrical Parameters and Cholesterol Concentration on Giant Unilamellar Vesicles Electroformation. Cell Biochem Biophys. 2020 Jun;78(2):157-164. doi: 10.1007/s12013-020-00910-9. Epub 2020 Apr 21. PMID: 32319021.
PubMed ID: 32319021
da Costa Loureiro L, da Costa Loureiro L, Gabriel-Junior EA, Zambuzi FA, Fontanari C, Sales-Campos H, Frantz FG, Faccioli LH, Sorgi CA. Pulmonary surfactant phosphatidylcholines induce immunological adaptation of alveolar macrophages. Mol Immunol. 2020 Apr 30;122:163-172. doi: 10.1016/j.molimm.2020.04.010. Epub ahead of print. PMID: 32361419.
PubMed ID: 32361419
Liu KN, Boxer SG. Target Membrane Cholesterol Modulates Single Influenza Virus Membrane Fusion Efficiency but Not Rate. Biophys J. 2020 May 19;118(10):2426-2433. doi: 10.1016/j.bpj.2020.03.021. Epub 2020 Apr 4. PMID: 32298636; PMCID: PMC7231891.
PubMed ID: 32298636
Yamamoto A, Tsukamoto T, Suzuki K, Hashimoto E, Kobashigawa Y, Shibasaki K, Uchida T, Inagaki F, Demura M, Ishimori K. Spectroscopic Characterization of Halorhodopsin Reconstituted into Nanodisks Using Native Lipids. Biophys J. 2020 Apr 29:S0006-3495(20)30344-1. doi: 10.1016/j.bpj.2020.04.021. Epub ahead of print. PMID: 32396848.
PubMed ID: 32396848
Riool M, de Breij A, Kwakman PHS, Schonkeren-Ravensbergen E, de Boer L, Cordfunke RA, Malanovic N, Drijfhout JW, Nibbering PH, Zaat SAJ. Thrombocidin-1-derived antimicrobial peptide TC19 combats superficial multi-drug resistant bacterial wound infections. Biochim Biophys Acta Biomembr. 2020 May 3:183282. doi: 10.1016/j.bbamem.2020.183282. Epub ahead of print. PMID: 32376222.
PubMed ID: 32376222
Li M, Heller WT, Liu CH, Gao CY, Cai Y, Hou Y, Nieh MP. Effects of fluidity and charge density on the morphology of a bicellar mixture - A SANS study. Biochim Biophys Acta Biomembr. 2020 Apr 15;1862(9):183315. doi: 10.1016/j.bbamem.2020.183315. Epub ahead of print. PMID: 32304755.
PubMed ID: 32304755
Mitchell W, Ng EA, Tamucci JD, Boyd KJ, Sathappa M, Coscia A, Pan M, Han X, Eddy NA, May ER, Szeto HH, Alder NN. The mitochondria-targeted peptide SS-31 binds lipid bilayers and modulates surface electrostatics as a key component of its mechanism of action. J Biol Chem. 2020 May 22;295(21):7452-7469. doi: 10.1074/jbc.RA119.012094. Epub 2020 Apr 9. PMID: 32273339.
PubMed ID: 32273339
Zimbone S, Santoro AM, La Mendola D, Giacomelli C, Trincavelli ML, Tomasello MF, Milardi D, García-Viñuales S, Sciacca MFM, Martini C, Grasso G. The Ionophoric Activity of a Pro-Apoptotic VEGF165 Fragment on HUVEC Cells. Int J Mol Sci. 2020 Apr 20;21(8):2866. doi: 10.3390/ijms21082866. PMID: 32325956; PMCID: PMC7216235.
PubMed ID: 32325956
Piecyk K, Pietrow P, Arnold T, Worch R, Korneeva NL, Jankowska-Anyszka M. Effect of HIV-1 TAT Peptide Fusion on 5' mRNA Cap Analogs Cell Membrane Permeability and Translation Inhibition. Bioconjug Chem. 2020 Apr 15;31(4):1156-1166. doi: 10.1021/acs.bioconjchem.0c00080. Epub 2020 Mar 31. PMID: 32227927.
PubMed ID: 32227927
Lee H, Jiang D, Pardridge WM. Lyoprotectant Optimization for the Freeze-Drying of Receptor-Targeted Trojan Horse Liposomes for Plasmid DNA Delivery. Mol Pharm. 2020 Apr 29. doi: 10.1021/acs.molpharmaceut.0c00310. Epub ahead of print. PMID: 32315188.
PubMed ID: 32315188
Jephthah S, Månsson LK, Belić D, Morth JP, Skepö M. Physicochemical Characterisation of KEIF-The Intrinsically Disordered N-Terminal Region of Magnesium Transporter A. Biomolecules. 2020 Apr 17;10(4):623. doi: 10.3390/biom10040623. PMID: 32316569; PMCID: PMC7226168.
PubMed ID: 32316569
Koseki K, Suzuki H. Deformation Dynamics of Giant Unilamellar Vesicles in the Large Surface-to-Volume Ratio Regime: The Emergence of Neuron-like Morphology. Langmuir. 2020 May 18. doi: 10.1021/acs.langmuir.0c00872. Epub ahead of print. PMID: 32364747.
PubMed ID: 32364747
Pols T, Singh S, Deelman-Driessen C, Gaastra BF, Poolman B. Enzymology of the pathway for ATP production by arginine breakdown. FEBS J. 2020 Apr 18. doi: 10.1111/febs.15337. Epub ahead of print. PMID: 32306469.
PubMed ID: 32306469
Sun J, Singaram I, Soflaee MH, Cho W. A Direct Fluorometric Activity Assay for Lipid Kinases and Phosphatases. J Lipid Res. 2020 Apr 27:jlr.D120000794. doi: 10.1194/jlr.D120000794. Epub ahead of print. PMID: 32341006.
PubMed ID: 32341006
Cholak E, Bugge K, Khondker A, Gauger K, Pedraz-Cuesta E, Pedersen ME, Bucciarelli S, Vestergaard B, Pedersen SF, Rheinstädter MC, Langkilde AE, Kragelund BB. Avidity within the N-terminal anchor drives α-synuclein membrane interaction and insertion. FASEB J. 2020 Apr 11. doi: 10.1096/fj.202000107R. Epub ahead of print. PMID: 32277854.
PubMed ID: 32277854
Gozem S, Johnson PJM, Halpin A, Luk HL, Morizumi T, Prokhorenko VI, Ernst OP, Olivucci M, Miller RJD. Excited-State Vibronic Dynamics of Bacteriorhodopsin from Two-Dimensional Electronic Photon Echo Spectroscopy and Multiconfigurational Quantum Chemistry. J Phys Chem Lett. 2020 May 4:3889-3896. doi: 10.1021/acs.jpclett.0c01063. Epub ahead of print. PMID: 32330041.
PubMed ID: 32330041
Roy D, Steinkühler J, Zhao Z, Lipowsky R, Dimova R. Mechanical Tension of Biomembranes Can Be Measured by Super Resolution (STED) Microscopy of Force-Induced Nanotubes. Nano Lett. 2020 May 13;20(5):3185-3191. doi: 10.1021/acs.nanolett.9b05232. Epub 2020 Apr 29. PMID: 32320255.
PubMed ID: 32320255
Santos TCB, Vaz A, Ventura AE, M Saied E, Arenz C, Fedorov A, Prieto M, Silva LC. Canonical and 1-Deoxy(methyl) Sphingoid Bases: Tackling the Effect of the Lipid Structure on Membrane Biophysical Properties. Langmuir. 2020 May 15. doi: 10.1021/acs.langmuir.0c01000. Epub ahead of print. PMID: 32369370.
PubMed ID: 32369370
Domingues TM, Perez KR, Riske KA. Revealing the mode of action of halictine antimicrobial peptides: a comprehensive study with model membranes. Langmuir. 2020 Apr 27. doi: 10.1021/acs.langmuir.0c00282. Epub ahead of print. PMID: 32336099.
PubMed ID: 32336099
Yandrapalli N, Seemann T, Robinson T. On-Chip Inverted Emulsion Method for Fast Giant Vesicle Production, Handling, and Analysis. Micromachines (Basel). 2020 Mar 10;11(3):285. doi: 10.3390/mi11030285. PMID: 32164221; PMCID: PMC7142477.
PubMed ID: 32164221
Maravilla E, Le DP, Tran JJ, Chiu MH, Prenner EJ, Weers PMM. Apolipophorin III interaction with phosphatidylglycerol and lipopolysaccharide: A potential mechanism for antimicrobial activity. Chem Phys Lipids. 2020 Mar 21;229:104909. doi: 10.1016/j.chemphyslip.2020.104909. Epub ahead of print. PMID: 32209325.
PubMed ID: 32209325
Zhang W, Metzger JM, Hackel BJ, Bates FS, Lodge TP. Influence of the Headgroup on the Interaction of Poly(ethylene oxide)-Poly(propylene oxide) Block Copolymers with Lipid Bilayers. J Phys Chem B. 2020 Mar 26;124(12):2417-2424. doi: 10.1021/acs.jpcb.0c00553. Epub 2020 Mar 16. PMID: 32175743.
PubMed ID: 32175743
Passos Gibson V, Fauquignon M, Ibarboure E, Leblond Chain J, Le Meins JF. Switchable Lipid Provides pH-Sensitive Properties to Lipid and Hybrid Polymer/Lipid Membranes. Polymers (Basel). 2020 Mar 11;12(3):E637. doi: 10.3390/polym12030637. PMID: 32168824.
PubMed ID: 32168824
Pham QD, Carlström G, Lafon O, Sparr E, Topgaard D. Quantification of the amount of mobile components in intact stratum corneum with natural-abundance 13C solid-state NMR. Phys Chem Chem Phys. 2020 Mar 25;22(12):6572-6583. doi: 10.1039/d0cp00079e. PMID: 32159206.
PubMed ID: 32159206
Škerle J, Humpolíčková J, Johnson N, Rampírová P, Poláchová E, Fliegl M, Dohnálek J, Suchánková A, Jakubec D, Strisovsky K. Membrane Protein Dimerization in Cell-Derived Lipid Membranes Measured by FRET with MC Simulations. Biophys J. 2020 Apr 21;118(8):1861-1875. doi: 10.1016/j.bpj.2020.03.011. Epub 2020 Mar 29. PMID: 32246901; PMCID: PMC7175701.
PubMed ID: 32246901
Josey BP, Heinrich F, Silin V, Lösche M. Association of Model Neurotransmitters with Lipid Bilayer Membranes. Biophys J. 2020 Mar 10;118(5):1044-1057. doi: 10.1016/j.bpj.2020.01.016. Epub 2020 Jan 28. PMID: 32032504; PMCID: PMC7063487.
PubMed ID: 32032504
Malabed R, Hanashima S, Murata M, Sakurai K. Interactions of OSW-1 with Lipid Bilayers in Comparison with Digitonin and Soyasaponin. Langmuir. 2020 Apr 7;36(13):3600-3610. doi: 10.1021/acs.langmuir.9b03957. Epub 2020 Mar 30. PMID: 32160747.
PubMed ID: 32160747
Bryce DA, Kitt JP, Myres GJ, Harris JM. Confocal Raman Microscopy Investigation of Phospholipid Monolayers Deposited on Nitrile-Modified Surfaces in Porous Silica Particles. Langmuir. 2020 Apr 21;36(15):4071-4079. doi: 10.1021/acs.langmuir.0c00456. Epub 2020 Apr 7. PMID: 32212663.
PubMed ID: 32212663
Kim M, Heinrich F, Haugstad G, Yu G, Yuan G, Satija SK, Zhang W, Seo HS, Metzger JM, Azarin SM, Lodge TP, Hackel BJ, Bates FS. Spatial Distribution of PEO-PPO-PEO Block Copolymer and PEO Homopolymer in Lipid Bilayers. Langmuir. 2020 Apr 7;36(13):3393-3403. doi: 10.1021/acs.langmuir.9b03208. Epub 2020 Mar 27. PMID: 32216370.
PubMed ID: 32216370
Olżyńska A, Wizert A, Štefl M, Iskander DR, Cwiklik L. Mixed polar-nonpolar lipid films as minimalistic models of Tear Film Lipid Layer: A Langmuir trough and fluorescence microscopy study. Biochim Biophys Acta Biomembr. 2020 Mar 31;1862(9):183300. doi: 10.1016/j.bbamem.2020.183300. Epub ahead of print. PMID: 32243884.
PubMed ID: 32243884
Raheem N, Kumar P, Lee E, Cheng JTJ, Hancock REW, Straus SK. Insights into the mechanism of action of two analogues of aurein 2.2. Biochim Biophys Acta Biomembr. 2020 Jun 1;1862(6):183262. doi: 10.1016/j.bbamem.2020.183262. Epub 2020 Mar 5. PMID: 32147356.
PubMed ID: 32147356
Faraj BHA, Collard L, Cliffe R, Blount LA, Lonnen R, Wallis R, Andrew PW, Hudson AJ. Formation of pre-pore complexes of pneumolysin is accompanied by a decrease in short-range order of lipid molecules throughout vesicle bilayers. Sci Rep. 2020 Mar 12;10(1):4585. doi: 10.1038/s41598-020-60348-0. PMID: 32165654; PMCID: PMC7067851.
PubMed ID: 32165654
Parigoris E, Dunkelmann DL, Murphy A, Wili N, Kaech A, Dumrese C, Jimenez-Rojo N, Silvan U. Facile generation of giant unilamellar vesicles using polyacrylamide gels. Sci Rep. 2020 Mar 16;10(1):4824. doi: 10.1038/s41598-020-61655-2. PMID: 32179778; PMCID: PMC7075891.
PubMed ID: 32179778
Dazzoni R, Grélard A, Morvan E, Bouter A, Applebee CJ, Loquet A, Larijani B, Dufourc EJ. The unprecedented membrane deformation of the human nuclear envelope, in a magnetic field, indicates formation of nuclear membrane invaginations. Sci Rep. 2020 Mar 20;10(1):5147. doi: 10.1038/s41598-020-61746-0. PMID: 32198481; PMCID: PMC7083927.
PubMed ID: 32198481
Tao M, Isas JM, Langen R. Annexin B12 Trimer Formation is Governed by a Network of Protein-Protein and Protein-Lipid Interactions. Sci Rep. 2020 Mar 24;10(1):5301. doi: 10.1038/s41598-020-62343-x. PMID: 32210350; PMCID: PMC7093510.
PubMed ID: 32210350
Agwa AJ, Tran P, Mueller A, Tran HNT, Deuis JR, Israel MR, McMahon KL, Craik DJ, Vetter I, Schroeder CI. Manipulation of a spider peptide toxin alters its affinity for lipid bilayers and potency and selectivity for voltage-gated sodium channel subtype 1.7. J Biol Chem. 2020 Apr 10;295(15):5067-5080. doi: 10.1074/jbc.RA119.012281. Epub 2020 Mar 5. PMID: 32139508; PMCID: PMC7152767.
PubMed ID: 32139508
Shen Y, Zhong Y, Fei F, Sun J, Czajkowsky DM, Gong B, Shao Z. Ultrasensitive liposome-based assay for the quantification of fundamental ion channel properties. Anal Chim Acta. 2020 May 22;1112:8-15. doi: 10.1016/j.aca.2020.03.044. Epub 2020 Mar 24. PMID: 32334685.
PubMed ID: 32334685
Vasquez-Montes V, Kyrychenko A, Vargas-Uribe M, Rodnin MV, Ladokhin AS. Conformational Switching in Bcl-xL: Enabling Non-Canonic Inhibition of Apoptosis Involves Multiple Intermediates and Lipid Interactions. Cells. 2020 Feb 26;9(3):539. doi: 10.3390/cells9030539. PMID: 32111007; PMCID: PMC7140517.
PubMed ID: 32111007
Cohen DT, Wales TE, McHenry MW, Engen JR, Walensky LD. Site-Dependent Cysteine Lipidation Potentiates the Activation of Proapoptotic BAX. Cell Rep. 2020 Mar 10;30(10):3229-3239.e6. doi: 10.1016/j.celrep.2020.02.057. PMID: 32160532.
PubMed ID: 32160532
Yong X, Zhao L, Deng W, Sun H, Zhou X, Mao L, Hu W, Shen X, Sun Q, Billadeau DD, Xue Y, Jia D. Mechanism of cargo recognition by retromer-linked SNX-BAR proteins. PLoS Biol. 2020 Mar 9;18(3):e3000631. doi: 10.1371/journal.pbio.3000631. PMID: 32150533; PMCID: PMC7082075.
PubMed ID: 32150533
Yin L, Masuyer G, Zhang S, Zhang J, Miyashita SI, Burgin D, Lovelock L, Coker SF, Fu TM, Stenmark P, Dong M. Characterization of a membrane binding loop leads to engineering botulinum neurotoxin B with improved therapeutic efficacy. PLoS Biol. 2020 Mar 17;18(3):e3000618. doi: 10.1371/journal.pbio.3000618. PMID: 32182233; PMCID: PMC7077807.
PubMed ID: 32182233
Newberry RW, Leong JT, Chow ED, Kampmann M, DeGrado WF. Deep mutational scanning reveals the structural basis for α-synuclein activity. Nat Chem Biol. 2020 Mar 9. doi: 10.1038/s41589-020-0480-6. Epub ahead of print. PMID: 32152544.
PubMed ID: 32152544
Mizumura T, Kondo K, Kurita M, Kofuku Y, Natsume M, Imai S, Shiraishi Y, Ueda T, Shimada I. Activation of adenosine A2A receptor by lipids from docosahexaenoic acid revealed by NMR. Sci Adv. 2020 Mar 18;6(12):eaay8544. doi: 10.1126/sciadv.aay8544. PMID: 32206717; PMCID: PMC7080496.
PubMed ID: 32206717
Majzner RG, Rietberg SP, Sotillo E, Dong R, Vachharajani VT, Labanieh L, Myklebust JH, Kadapakkam M, Weber EW, Tousley AM, Richards RM, Heitzeneder S, Nguyen SM, Wiebking V, Theruvath J, Lynn RC, Xu P, Dunn AR, Vale RD, Mackall CL. Tuning the Antigen Density Requirement for CAR T Cell Activity. Cancer Discov. 2020 Mar 19:CD-19-0945. doi: 10.1158/2159-8290.CD-19-0945. Epub ahead of print. PMID: 32193224.
PubMed ID: 32193224
Bryce DA, Kitt JP, Myres GJ, Harris JM. Confocal Raman Microscopy Investigation of Phospholipid Monolayers Deposited on Nitrile-Modified Surfaces in Porous Silica Particles. Langmuir. 2020 Apr 7. doi: 10.1021/acs.langmuir.0c00456. Epub ahead of print. PMID: 32212663.
PubMed ID: 32212663
Malabed R, Hanashima S, Murata M, Sakurai K. Interactions of OSW-1 with Lipid Bilayers in Comparison with Digitonin and Soyasaponin. Langmuir. 2020 Mar 30. doi: 10.1021/acs.langmuir.9b03957. Epub ahead of print. PMID: 32160747.
PubMed ID: 32160747
Nigam P. Equilibrium penetration of pluronic F-68 in lipid monolayers. Chem Phys Lipids. 2020 May;228:104888. doi: 10.1016/j.chemphyslip.2020.104888. Epub 2020 Feb 4. PMID: 32032569.
PubMed ID: 32032569
Gottipati K, Woodson M, Choi KH. Membrane binding and rearrangement by chikungunya virus capping enzyme nsP1. Virology. 2020 May;544:31-41. doi: 10.1016/j.virol.2020.02.006. Epub 2020 Feb 24. PMID: 32174512; PMCID: PMC7103501.
PubMed ID: 32174512
Chakraborty A, Hertel A, Ditmars H, Dhar P. Impact of Engineered Carbon Nanodiamonds on the Collapse Mechanism of Model Lung Surfactant Monolayers at the Air-Water Interface. Molecules. 2020 Feb 7;25(3):714. doi: 10.3390/molecules25030714. PMID: 32046011; PMCID: PMC7037128.
PubMed ID: 32046011
Wang CR, Bubner ER, Jovcevski B, Mittal P, Pukala TL. Interrogating the higher order structures of snake venom proteins using an integrated mass spectrometric approach. J Proteomics. 2020 Mar 30;216:103680. doi: 10.1016/j.jprot.2020.103680. Epub 2020 Feb 3. PMID: 32028038.
PubMed ID: 32028038
Latza VM, Demé B, Schneck E. Membrane Adhesion via Glycolipids Occurs for Abundant Saccharide Chemistries. Biophys J. 2020 Feb 12:S0006-3495(20)30122-3. doi: 10.1016/j.bpj.2020.02.003. Epub ahead of print. PMID: 32097623.
PubMed ID: 32097623
Azouz M, Gonin M, Fiedler S, Faherty J, Decossas M, Cullin C, Villette S, Lafleur M, D Alves I, Lecomte S, Ciaccafava A. Microfluidic diffusional sizing probes lipid nanodiscs formation. Biochim Biophys Acta Biomembr. 2020 Feb 20;1862(6):183215. doi: 10.1016/j.bbamem.2020.183215. Epub ahead of print. PMID: 32061645.
PubMed ID: 32061645
Martinez-Calle M, Prieto M, Olmeda B, Fedorov A, Loura LMS, Pérez-Gil J. Pulmonary surfactant protein SP-B nanorings induce the multilamellar organization of surfactant complexes. Biochim Biophys Acta Biomembr. 2020 Feb 15;1862(6):183216. doi: 10.1016/j.bbamem.2020.183216. Epub ahead of print. PMID: 32067963.
PubMed ID: 32067963
Mlynarczyk DT, Piskorz J, Popenda L, Stolarska M, Szczolko W, Konopka K, Jurga S, Sobotta L, Mielcarek J, Düzgüneş N, Goslinski T. S-seco-porphyrazine as a new member of the seco-porphyrazine family - Synthesis, characterization and photocytotoxicity against cancer cells. Bioorg Chem. 2020 Mar;96:103634. doi: 10.1016/j.bioorg.2020.103634. Epub 2020 Jan 30. PMID: 32044518.
PubMed ID: 32044518
Al-Adwani S, Wallin C, Balhuizen MD, Veldhuizen EJA, Coorens M, Landreh M, Végvári Á, Smith ME, Qvarfordt I, Lindén A, Gräslund A, Agerberth B, Bergman P. Studies on citrullinated LL-37: detection in human airways, antibacterial effects and biophysical properties. Sci Rep. 2020 Feb 11;10(1):2376. doi: 10.1038/s41598-020-59071-7. PMID: 32047184; PMCID: PMC7012854.
PubMed ID: 32047184
Banerjee S, Hashemi M, Zagorski K, Lyubchenko YL. Interaction of Aβ42 with Membranes Triggers the Self-Assembly into Oligomers. Int J Mol Sci. 2020 Feb 8;21(3):1129. doi: 10.3390/ijms21031129. PMID: 32046252; PMCID: PMC7036922.
PubMed ID: 32046252
Kim M, Heinrich F, Haugstad G, Yu G, Yuan G, Satija SK, Zhang W, Seo HS, Metzger JM, Azarin SM, Lodge TP, Hackel BJ, Bates FS. Spatial Distribution of PEO-PPO-PEO Block Copolymer and PEO Homopolymer in Lipid Bilayers. Langmuir. 2020 Mar 27. doi: 10.1021/acs.langmuir.9b03208. Epub ahead of print. PMID: 32216370.
PubMed ID: 32216370
Gerelli Y, Eriksson Skog A, Jephthah S, Welbourn RJL, Klechikov A, Skepö M. Spontaneous formation of cushioned model membranes promoted by an intrinsically disordered protein. Langmuir. 2020 Mar 25. doi: 10.1021/acs.langmuir.0c00120. Epub ahead of print. PMID: 32212610.
PubMed ID: 32212610
Yeh V, Goode A, Eastham G, Rambo R, Inoue K, Doutch JJ, Bonev BB. Membrane stability in the presence of methacrylate esters. Langmuir. 2020 Mar 23. doi: 10.1021/acs.langmuir.9b03759. Epub ahead of print. PMID: 32202793.
PubMed ID: 32202793
Frame NM, Kumanan M, Wales TE, Bandara A, Fändrich M, Straub JE, Engen JR, Gursky O. Structural Basis for Lipid Binding and Function by an Evolutionarily Conserved Protein, Serum Amyloid A. J Mol Biol. 2020 Feb 6:S0022-2836(20)30093-0. doi: 10.1016/j.jmb.2020.01.029. Epub ahead of print. PMID: 32035904.
PubMed ID: 32035904
Trichet M, Lappano R, Belnou M, Salazar Vazquez LS, Alves I, Ravault D, Sagan S, Khemtemourian L, Maggiolini M, Jacquot Y. Interaction of the Anti-Proliferative GPER Inverse Agonist ERα17p with the Breast Cancer Cell Plasma Membrane: From Biophysics to Biology. Cells. 2020 Feb 15;9(2):447. doi: 10.3390/cells9020447. PMID: 32075246; PMCID: PMC7072814.
PubMed ID: 32075246
Henry KE, Chaney AM, Nagle VL, Cropper HC, Mozaffari S, Slaybaugh G, Parang K, Andreev O, Reshetnyak YK, James ML, Lewis JS. Demarcation of Sepsis-Induced Peripheral and Central Acidosis with pH-Low Insertion Cyclic (pHLIC) Peptide. J Nucl Med. 2020 Jan 31:jnumed.119.233072. doi: 10.2967/jnumed.119.233072. Epub ahead of print. PMID: 32005774.
PubMed ID: 32005774
Das DK, Bulow U, Diehl WE, Durham ND, Senjobe F, Chandran K, Luban J, Munro JB. Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding. PLoS Biol. 2020 Feb 10;18(2):e3000626. doi: 10.1371/journal.pbio.3000626. PMID: 32040508; PMCID: PMC7034923.
PubMed ID: 32040508
Lee SH, Lee M, Yang H, Cho Y, Hong S, Park TH. Bioelectronic sensor mimicking the human neuroendocrine system for the detection of hypothalamic-pituitary-adrenal axis hormones in human blood. Biosens Bioelectron. 2020 Apr 15;154:112071. doi: 10.1016/j.bios.2020.112071. Epub 2020 Feb 3. PMID: 32056965.
PubMed ID: 32056965
Fujioka Y, Alam JM, Noshiro D, Mouri K, Ando T, Okada Y, May AI, Knorr RL, Suzuki K, Ohsumi Y, Noda NN. Phase separation organizes the site of autophagosome formation. Nature. 2020 Feb;578(7794):301-305. doi: 10.1038/s41586-020-1977-6. Epub 2020 Feb 5. PMID: 32025038.
PubMed ID: 32025038
Kitamata M, Hotta M, Hamada-Nakahara S, Suetsugu S. The membrane binding and deformation property of vaccinia virus K1 ankyrin repeat domain protein. Genes Cells. 2020 Jan 24:10.1111/gtc.12749. doi: 10.1111/gtc.12749. Epub ahead of print. PMID: 31976592.
PubMed ID: 31976592
Kitamata M, Hotta M, Hamada-Nakahara S, Suetsugu S. The membrane binding and deformation property of vaccinia virus K1 ankyrin repeat domain protein. Genes Cells. 2020 Jan 24:10.1111/gtc.12749. doi: 10.1111/gtc.12749. Epub ahead of print. PMID: 31976592.
PubMed ID: 31976592
Taniguchi S, Toyoshima M, Takamatsu T, Mima J. Curvature-sensitive trans-assembly of human Atg8-family proteins in autophagy-related membrane tethering. Protein Sci. 2020 Jan 20:10.1002/pro.3828. doi: 10.1002/pro.3828. Epub ahead of print. PMID: 31960529.
PubMed ID: 31960529
Bhatia T, Christ S, Steinkühler J, Dimova R, Lipowsky R. Simple sugars shape giant vesicles into multispheres with many membrane necks. Soft Matter. 2020 Feb 7;16(5):1246-1258. doi: 10.1039/c9sm01890e. Epub 2020 Jan 8. PMID: 31912078.
PubMed ID: 31912078
Olżyńska A, Delcroix P, Dolejšová T, Krzaczek K, Korchowiec B, Czogalla A, Cwiklik L. Properties of Lipid Models of Lung Surfactant Containing Cholesterol and Oxidized Lipids: A Mixed Experimental and Computational Study. Langmuir. 2020 Feb 4;36(4):1023-1033. doi: 10.1021/acs.langmuir.9b02469. Epub 2020 Jan 27. PMID: 31902205.
PubMed ID: 31902205
Schäfer J, Nehls J, Schön M, Mey I, Steinem C. Leaflet-Dependent Distribution of PtdIns[4,5]P2 in Supported Model Membranes. Langmuir. 2020 Feb 11;36(5):1320-1328. doi: 10.1021/acs.langmuir.9b03793. Epub 2020 Jan 30. PMID: 31951413.
PubMed ID: 31951413
Zeng S, Li S, Utterström J, Wen C, Selegård R, Zhang SL, Aili D, Zhang Z. Mechanism and Kinetics of Lipid Bilayer Formation in Solid-State Nanopores. Langmuir. 2020 Feb 18;36(6):1446-1453. doi: 10.1021/acs.langmuir.9b03637. Epub 2020 Feb 4. PMID: 31971393.
PubMed ID: 31971393
Ramos AP, Doroudgar M, Lafleur M. Determination of n-alkane partitioning within phosphatidylethanolamine Lα/HII phases. Biochim Biophys Acta Biomembr. 2020 Jan 20;1862(5):183201. doi: 10.1016/j.bbamem.2020.183201. Epub ahead of print. PMID: 31972164.
PubMed ID: 31972164
Pandit G, Biswas K, Ghosh S, Debnath S, Bidkar AP, Satpati P, Bhunia A, Chatterjee S. Rationally designed antimicrobial peptides: Insight into the mechanism of eleven residue peptides against microbial infections. Biochim Biophys Acta Biomembr. 2020 Jan 15;1862(4):183177. doi: 10.1016/j.bbamem.2020.183177. Epub ahead of print. PMID: 31954105.
PubMed ID: 31954105
Kong L, Dawkins E, Campbell F, Winkler E, Derks RJE, Giera M, Kamp F, Steiner H, Kros A. Photo-controlled delivery of very long chain fatty acids to cell membranes and modulation of membrane protein function. Biochim Biophys Acta Biomembr. 2020 Jan 20;1862(5):183200. doi: 10.1016/j.bbamem.2020.183200. Epub ahead of print. PMID: 31972163.
PubMed ID: 31972163
Sabapathy T, Deplazes E, Mancera RL. Revisiting the Interaction of Melittin with Phospholipid Bilayers: The Effects of Concentration and Ionic Strength. Int J Mol Sci. 2020 Jan 23;21(3):E746. doi: 10.3390/ijms21030746. PMID: 31979376.
PubMed ID: 31979376
Lamichhane R, Liu JJ, White KL, Katritch V, Stevens RC, Wüthrich K, Millar DP. Biased Signaling of the G-Protein-Coupled Receptor β2AR Is Governed by Conformational Exchange Kinetics. Structure. 2020 Jan 23:S0969-2126(20)30001-0. doi: 10.1016/j.str.2020.01.001. Epub ahead of print. PMID: 31978323.
PubMed ID: 31978323
Li G, Wang Q, Kakuda S, London E. Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids. J Lipid Res. 2020 Jan 21:jlr.RA119000565. doi: 10.1194/jlr.RA119000565. Epub ahead of print. PMID: 31964764.
PubMed ID: 31964764
Gao YG, My Le LT, Zhai X, Boldyrev IA, Mishra SK, Tischer A, Murayama T, Nishida A, Molotkovsky JG, Alam A, Brown RE. Measuring Lipid Transfer Protein Activity Using Bicelle-Dilution Model Membranes. Anal Chem. 2020 Feb 18;92(4):3417-3425. doi: 10.1021/acs.analchem.9b05523. Epub 2020 Feb 4. PMID: 31970977.
PubMed ID: 31970977
Nademi Y , Tang T , Uludağ H . Membrane lipids destabilize short interfering ribonucleic acid (siRNA)/polyethylenimine nanoparticles. Nanoscale. 2020 Jan 2;12(2):1032-1045. doi: 10.1039/c9nr08128c. PMID: 31845926.
PubMed ID: 31845926
Reddy B, Bavi N, Lu A, Park Y, Perozo E. Molecular basis of force-from-lipids gating in the mechanosensitive channel MscS. Elife. 2019 Dec 27;8:e50486. doi: 10.7554/eLife.50486. PMID: 31880537.
PubMed ID: 31880537
Kumar P, Wang Y, Zhang Z, Zhao Z, Cymes GD, Tajkhorshid E, Grosman C. Cryo-EM structures of a lipid-sensitive pentameric ligand-gated ion channel embedded in a phosphatidylcholine-only bilayer. Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1788-1798. doi: 10.1073/pnas.1906823117. Epub 2020 Jan 7. PMID: 31911476; PMCID: PMC6983364.
PubMed ID: 31911476
Love C, Steinkühler J, Gonzales DT, Yandrapalli N, Robinson T, Dimova R, Tang TD. Reversible pH responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions. Angew Chem Int Ed Engl. 2020 Jan 14:10.1002/anie.201914893. doi: 10.1002/anie.201914893. Epub ahead of print. PMID: 31943629.
PubMed ID: 31943629
Ma Y, Ding Y, Song X, Ma X, Li X, Zhang N, Song Y, Sun Y, Shen Y, Zhong W, Hu LA, Ma Y, Zhang MY. Structure-guided discovery of a single-domain antibody agonist against human apelin receptor. Sci Adv. 2020 Jan 15;6(3):eaax7379. doi: 10.1126/sciadv.aax7379. PMID: 31998837; PMCID: PMC6962038.
PubMed ID: 31998837
Jiang T, Hall A, Eres M, Hemmatian Z, Qiao B, Zhou Y, Ruan Z, Couse AD, Heller WT, Huang H, de la Cruz MO, Rolandi M, Xu T. Single-chain heteropolymers transport protons selectively and rapidly. Nature. 2020 Jan;577(7789):216-220. doi: 10.1038/s41586-019-1881-0. Epub 2020 Jan 8. PMID: 31915399.
PubMed ID: 31915399
Carvalho VND, Hertanu A, Grélard A, Mchinda S, Soustelle L, Loquet A, Dufourc EJ, Varma G, Alsop DC, Thureau P, Girard OM, Duhamel G. MRI assessment of multiple dipolar relaxation time (T1D) components in biological tissues interpreted with a generalized inhomogeneous magnetization transfer (ihMT) model. J Magn Reson. 2019 Dec 14;311:106668. doi: 10.1016/j.jmr.2019.106668. [Epub ahead of print]. PMID: 31887555.
PubMed ID: 31887555
Chang EH, Giaquinto P, Huang J, Balashova NV, Brown AC. Epigallocatechin gallate inhibits leukotoxin release by Aggregatibacter actinomycetemcomitans by promoting association with the bacterial membrane. Mol Oral Microbiol. 2020 Jan;35(1):29-39. doi: 10.1111/omi.12275. Epub 2019 Dec 26. PMID: 31816197.
PubMed ID: 31816197
Bhatt Mitra J, Sharma VK, Mukherjee A, Garcia Sakai V, Dash A, Kumar M. Ubiquicidin-Derived Peptides Selectively Interact with the Anionic Phospholipid Membrane. Langmuir. 2020 Jan 14;36(1):397-408. doi: 10.1021/acs.langmuir.9b03243. Epub 2019 Dec 26. PMID: 31793791.
PubMed ID: 31793791
Marquette A, Leborgne C, Schartner V, Salnikov E, Bechinger B, Kichler A. Peptides derived from the C-terminal domain of HIV-1 Viral Protein R in lipid bilayers: Structure, membrane positioning and gene delivery. Biochim Biophys Acta Biomembr. 2020 Feb 1;1862(2):183149. doi: 10.1016/j.bbamem.2019.183149. Epub 2019 Dec 6. PMID: 31816324.
PubMed ID: 31816324
Cardoso RMS, Martins PAT, Ramos CV, Cordeiro MM, Leote RJB, Razi Naqvi K, Vaz WLC, Moreno MJ. Effect of dipole moment on amphiphile solubility and partition into liquid ordered and liquid disordered phases in lipid bilayers. Biochim Biophys Acta Biomembr. 2020 Mar 1;1862(3):183157. doi: 10.1016/j.bbamem.2019.183157. Epub 2019 Dec 15. PMID: 31846646.
PubMed ID: 31846646
Avelange-Macherel MH, Rolland A, Hinault MP, Tolleter D, Macherel D. The Mitochondrial Small Heat Shock Protein HSP22 from Pea is a Thermosoluble Chaperone Prone to Co-Precipitate with Unfolding Client Proteins. Int J Mol Sci. 2019 Dec 21;21(1):E97. doi: 10.3390/ijms21010097. PMID: 31877784.
PubMed ID: 31877784
Svoronos AA, Bahal R, Pereira MC, Barrera FN, Deacon JC, Bosenberg M, DiMaio D, Glazer PM, Engelman DM. Tumor-Targeted, Cytoplasmic Delivery of Large, Polar Molecules Using a pH-Low Insertion Peptide. Mol Pharm. 2020 Jan 13;10.1021/acs.molpharmaceut.9b00883. doi: 10.1021/acs.molpharmaceut.9b00883. [Epub ahead of print]. PMID: 31855437.
PubMed ID: 31855437
Josts I, Gao Y, Monteiro DCF, Niebling S, Nitsche J, Veith K, Gräwert TW, Blanchet CE, Schroer MA, Huse N, Pearson AR, Svergun DI, Tidow H. Structural Kinetics of MsbA Investigated by Stopped-Flow Time-Resolved Small-Angle X-Ray Scattering. Structure. 2019 Dec 17;S0969-2126(19)30439-3. doi: 10.1016/j.str.2019.12.001. [Epub ahead of print]. PMID: 31899087.
PubMed ID: 31899087
Rodríguez-Fdez S, Citterio C, Lorenzo-Martín LF, Baltanás-Copado J, Llorente-González C, Corbalán-García S, Vicente-Manzanares M, Bustelo XR. Phosphatidylinositol Monophosphates Regulate Optimal Vav1 Signaling Output. Cells. 2019 Dec 16;8(12):1649. doi: 10.3390/cells8121649. PMID: 31888228; PMCID: PMC6952945.
PubMed ID: 31888228
Sipe SN, Patrick JW, Laganowsky A, Brodbelt JS. Enhanced Characterization of Membrane Protein Complexes by Ultraviolet Photodissociation Mass Spectrometry. Anal Chem. 2020 Jan 7;92(1):899-907. doi: 10.1021/acs.analchem.9b03689. Epub 2019 Dec 10. PMID: 31765130; PMCID: PMC6949371.
PubMed ID: 31765130
Luchini A, Tidemand FG, Johansen NT, Campana M, Sotres J, Ploug M, Cárdenas M, Arleth L. Peptide Disc Mediated Control of Membrane Protein Orientation in Supported Lipid Bilayers for Surface-Sensitive Investigations. Anal Chem. 2020 Jan 7;92(1):1081-1088. doi: 10.1021/acs.analchem.9b04125. Epub 2019 Dec 10. PMID: 31769649.
PubMed ID: 31769649
Rangl M, Schmandt N, Perozo E, Scheuring S. Real time dynamics of Gating-Related conformational changes in CorA. Elife. 2019 Nov 27;8:e47322. doi: 10.7554/eLife.47322. PMID: 31774394; PMCID: PMC6927688.
PubMed ID: 31774394
Rathore SS, Liu Y, Yu H, Wan C, Lee M, Yin Q, Stowell MHB, Shen J. Intracellular Vesicle Fusion Requires a Membrane-Destabilizing Peptide Located at the Juxtamembrane Region of the v-SNARE. Cell Rep. 2019 Dec 24;29(13):4583-4592.e3. doi: 10.1016/j.celrep.2019.11.107. PMID: 31875562.
PubMed ID: 31875562
Brown JWP, Bauer A, Polinkovsky ME, Bhumkar A, Hunter DJB, Gaus K, Sierecki E, Gambin Y. Single-molecule detection on a portable 3D-printed microscope. Nat Commun. 2019 Dec 11;10(1):5662. doi: 10.1038/s41467-019-13617-0.
PubMed ID: 31827096
Suo Y, Wang Z, Zubcevic L, Hsu AL, He Q, Borgnia MJ, Ji RR, Lee SY. Structural Insights into Electrophile Irritant Sensing by the Human TRPA1 Channel. Neuron. 2019 Dec 6. pii: S0896-6273(19)31009-8. doi: 10.1016/j.neuron.2019.11.023. [Epub ahead of print]
PubMed ID: 31866091
Zhao Y, Lee CK, Lin CH, Gassen RB, Xu X, Huang Z, Xiao C, Bonorino C, Lu LF, Bui JD, Hui E. PD-L1:CD80 Cis-Heterodimer Triggers the Co-stimulatory Receptor CD28 While Repressing the Inhibitory PD-1 and CTLA-4 Pathways. Immunity. 2019 Dec 17;51(6):1059-1073.e9. doi: 10.1016/j.immuni.2019.11.003. Epub 2019 Nov 19.
PubMed ID: 31757674
Lee GS, Park JW. Interactions of Cinnamycin-Immobilized Gold Nanorods with Biomimetic Membranes. J Membr Biol. 2020 Feb;253(1):37-42. doi: 10.1007/s00232-019-00103-3. Epub 2019 Nov 22.
PubMed ID: 31720015
Karanji AK, Beasley M, Sharif D, Ranjbaran A, Legleiter J, Valentine SJ. Investigating the interactions of the first 17 amino acid residues of Huntingtin with lipid vesicles using mass spectrometry and molecular dynamics. J Mass Spectrom. 2019 Nov 22. doi: 10.1002/jms.4470. [Epub ahead of print]
PubMed ID: 31756784
Agarwal A, Das D, Banerjee T, Mukhopadhyay S. Energy migration captures membrane-induced oligomerization of the prion protein. Biochim Biophys Acta Proteins Proteom. 2020 Feb;1868(2):140324. doi: 10.1016/j.bbapap.2019.140324. Epub 2019 Nov 15.
PubMed ID: 31740413
Olzynska A, Delcroix P, Dolejšová T, Krzaczek K, Korchowiec B, Czogalla A, Cwiklik L. Properties of Lipid Models of Lung Surfactant Containing Cholesterol and Oxidized Lipids: a Mixed Experimental and Computational Study. Langmuir. 2020 Jan 5. doi: 10.1021/acs.langmuir.9b02469. [Epub ahead of print]
PubMed ID: 31902205
Kozon D, Mierzejewska J, Kobiela T, Grochowska A, Dudnyk K, Głogowska A, Sobiepanek A, Kuźmińska A, Ciach T, Augustynowicz-Kopeć E, Jańczewski D. Amphiphilic Polymethyloxazoline-Polyethyleneimine Copolymers: Interaction with Lipid Bilayer and Antibacterial Properties. Macromol Biosci. 2019 Dec;19(12):e1900254. doi: 10.1002/mabi.201900254. Epub 2019 Nov 20.
PubMed ID: 31747130
Meher G, Bhattacharjya S, Chakraborty H. Membrane Cholesterol Modulates Oligomeric Status and Peptide-Membrane Interaction of Severe Acute Respiratory Syndrome Coronavirus Fusion Peptide. J Phys Chem B. 2019 Dec 19;123(50):10654-10662. doi: 10.1021/acs.jpcb.9b08455. Epub 2019 Dec 6.
PubMed ID: 31743644
Nair P, Dey D, Borkotoky S, Shukla A, Banerjee M. Hydrophobicity and oligomerization are essential parameters for membrane penetration activity of the VP4 peptide from Hepatitis A Virus (HAV). Biochem Biophys. 2019 Dec 15;678:108188. doi: 10.1016/j.abb.2019.108188. Epub 2019 Nov 8.
PubMed ID: 31711790
Gao LP, Chen HC, Ma ZL, Chen AD, Du HL, Yin J, Jing YH. Fibrillation of human islet amyloid polypeptide and its toxicity to pancreatic β-cells under lipid environment. Biochim Biophys Acta Gen Subj. 2020 Jan;1864(1):129422. doi: 10.1016/j.bbagen.2019.129422. Epub 2019 Sep 3.
PubMed ID: 31491457
Bertrand B, Munusamy S, Espinosa-Romero JF, Corzo G, Arenas Sosa I, Galván-Hernández A, Ortega-Blake I, Hernández-Adame PL, Ruiz-García J, Velasco-Bolom JL, Garduño-Juárez R, Munoz-Garay C. Biophysical characterization of the insertion of two potent antimicrobial peptides-Pin2 and its variant Pin2[GVG] in biological model membranes. Biochim Biophys Acta Biomembr. 2020 Feb 1;1862(2):183105. doi: 10.1016/j.bbamem.2019.183105. Epub 2019 Nov 2.
PubMed ID: 31682816
Patel J, Chowdhury EA, Noorani B, Bickel U, Huang J. Isoflurane increases cell membrane fluidity significantly at clinical concentrations. Biochim Biophys Acta Biomembr. 2020 Feb 1;1862(2):183140. doi: 10.1016/j.bbamem.2019.183140. Epub 2019 Nov 29.
PubMed ID: 31790694
Zakharova AA, Efimova SS, Malev VV, Ostroumova OS. Fengycin induces ion channels in lipid bilayers mimicking target fungal cell membranes. Sci Rep. 2019 Nov 5;9(1):16034. doi: 10.1038/s41598-019-52551-5.
PubMed ID: 31690786
Gallez A, Palazzo C, Blacher S, Tskitishvili E, Noël A, Foidart JM, Evrard B, Pequeux C, Piel G. Liposomes and drug-in-cyclodextrin-in-liposomes formulations encapsulating 17β-estradiol: An innovative drug delivery system that prevents the activation of the membrane-initiated steroid signaling (MISS) of estrogen receptor α. Int J Pharm. 2020 Jan 5;573:118861. doi: 10.1016/j.ijpharm.2019.118861. Epub 2019 Nov 22.
PubMed ID: 31765774
Fantin SM, Parson KF, Niu S, Liu J, Polasky DA, Dixit SM, Ferguson-Miller SM, Ruotolo BT. Collision Induced Unfolding Classifies Ligands Bound to the Integral Membrane Translocator Protein. Anal Chem. 2019 Dec 17;91(24):15469-15476. doi: 10.1021/acs.analchem.9b03208. Epub 2019 Dec 5.
PubMed ID: 31743004
Su H, Liu HY, Pappa AM, Hidalgo TC, Cavassin P, Inal S, Owens RM, Daniel S. Facile Generation of Biomimetic-Supported Lipid Bilayers on Conducting Polymer Surfaces for Membrane Biosensing. ACS Appl Mater Interfaces. 2019 Nov 27;11(47):43799-43810. doi: 10.1021/acsami.9b10303. Epub 2019 Nov 12.
PubMed ID: 31659897
Henriques ST, Peacock H, Benfield AH, Wang CK, Craik DJ. Is the Mirror Image a True Reflection? Intrinsic Membrane Chirality Modulates Peptide Binding. J Am Chem Soc. 2019 Dec 26;141(51):20460-20469. doi: 10.1021/jacs.9b11194. Epub 2019 Dec 10.
PubMed ID: 31765148
Faizullin D, Valiullina Y, Salnikov V, Zuev Y. Direct interaction of fibrinogen with lipid microparticles modulates clotting kinetics and clot structure. Nanomedicine. 2019 Oct 23;23:102098. doi: 10.1016/j.nano.2019.102098. [Epub ahead of print]
PubMed ID: 31655206
Fotakis P, Kothari V, Thomas DG, Westerterp M, Molusky MM, Altin E, Abramowicz S, Wang N, He Y, Heinecke JW, Bornfeldt KE, Tall AR. Anti-Inflammatory Effects of HDL (High-Density Lipoprotein) in Macrophages Predominate Over Proinflammatory Effects in Atherosclerotic Plaques. Arterioscler Thromb Vasc Biol. 2019 Dec;39(12):e253-e272. doi: 10.1161/ATVBAHA.119.313253. Epub 2019 Oct 3.
PubMed ID: 31578081
Ohmann A, Göpfrich K, Joshi H, Thompson RF, Sobota D, Ranson NA, Aksimentiev A, Keyser UF. Controlling aggregation of cholesterol-modified DNA nanostructures. Nucleic Acids Res. 2019 Dec 2;47(21):11441-11451. doi: 10.1093/nar/gkz914.
PubMed ID: 31642494
Singh AK, McGoldrick LL, Demirkhanyan L, Leslie M, Zakharian E, Sobolevsky AI. Structural basis of temperature sensation by the TRP channel TRPV3. Nat Struct Mol Biol. 2019 Nov;26(11):994-998. doi: 10.1038/s41594-019-0318-7. Epub 2019 Oct 21.
PubMed ID: 31636415
Golysheva EA, Dzuba SA. Lipid chain mobility and packing in DOPC bilayers at cryogenic temperatures. Chem Phys Lipids. 2019 Sep 13;226:104817. doi: 10.1016/j.chemphyslip.2019.104817. [Epub ahead of print]
PubMed ID: 31525380
Sahu SS, Sarkar P, Shrivastava S, Chattopadhyay A. Differential effects of simvastatin on membrane organization and dynamics in varying phases. Chem Phys Lipids. 2019 Dec;225:104831. doi: 10.1016/j.chemphyslip.2019.104831. Epub 2019 Sep 27.
PubMed ID: 31568757
Pang B, Bian X, Xing J, Liu S, Liu Z, Song F. Effects of lithospermic acid on hIAPP aggregation and amyloid-induced cytotoxicity by multiple analytical methods. Biochim Biophys Acta Proteins Proteom. 2019 Sep 14:140283. doi: 10.1016/j.bbapap.2019.140283. [Epub ahead of print]
PubMed ID: 31526870
Katsuta S, Okano T, Koiwai K, Suzuki H. Ejection of Large Particulate Materials from Giant Unilamellar Vesicles Induced by Electropulsation. Langmuir. 2019 Oct 8;35(40):13196-13204. doi: 10.1021/acs.langmuir.9b01617. Epub 2019 Sep 20.
PubMed ID: 31498647
Olleik H, Nicoletti C, Lafond M, Courvoisier-Dezord E, Xue P, Hijazi A, Baydoun E, Perrier J, Maresca M. Comparative Structure-Activity Analysis of the Antimicrobial Activity, Cytotoxicity, and Mechanism of Action of the Fungal Cyclohexadepsipeptides Enniatins and Beauvericin. Toxins (Basel). 2019 Sep 3;11(9). pii: E514. doi: 10.3390/toxins11090514.
PubMed ID: 31484420
Wang H, Stahl F, Scheper T, Steffens M, Warnecke A, Zeilinger C. Microarray-based screening system identifies temperature-controlled activity of Connexin 26 that is distorted by mutations. Sci Rep. 2019 Sep 19;9(1):13543. doi: 10.1038/s41598-019-49423-3.
PubMed ID: 31537823
Taneva SG, Lee J, Knowles DG, Tishyadhigama C, Chen H, Cornell RB. Interdomain communication in the phosphatidylcholine regulatory enzyme, CCTα, relies on a modular αE helix. J Biol Chem. 2019 Oct 18;294(42):15517-15530. doi: 10.1074/jbc.RA119.009849. Epub 2019 Sep 4.
PubMed ID: 31488547
Sparks RP, Arango AS, Starr ML, Aboff ZL, Hurst LR, Rivera-Kohr DA, Zhang C, Harden KA, Jenkins JL, Guida WC, Tajkhorshid E, Fratti RA. A small-molecule competitive inhibitor of phosphatidic acid binding by the AAA+ protein NSF/Sec18 blocks the SNARE-priming stage of vacuole fusion. J Biol Chem. 2019 Sep 12. pii: jbc.RA119.008865. doi: 10.1074/jbc.RA119.008865. [Epub ahead of print]
PubMed ID: 31515268
R Arnold W, Zelasko S, D Meling D, Sam K, Das A. Polymorphisms of CYP2C8 Alter First-Electron Transfer Kinetics and Increase Catalytic Uncoupling. Int J Mol Sci. 2019 Sep 18;20(18). pii: E4626. doi: 10.3390/ijms20184626.
PubMed ID: 31540428
Stachowicz-Kuśnierz A, Seidler T, Rogalska E, Korchowiec J, Korchowiec B. Lung surfactant monolayer - A good natural barrier against dibenzo-p-dioxins. Chemosphere. 2019 Sep 18;240:124850. doi: 10.1016/j.chemosphere.2019.124850. [Epub ahead of print]
PubMed ID: 31561163
Lenarčič T, Pirc K, Hodnik V, Albert I, Borišek J, Magistrato A, Nürnberger T, Podobnik M, Anderluh G. Molecular basis for functional diversity among microbial Nep1-like proteins. PLoS Pathog. 2019 Sep 3;15(9):e1007951. doi: 10.1371/journal.ppat.1007951. eCollection 2019 Sep.
PubMed ID: 31479498
McGoldrick LL, Singh AK, Demirkhanyan L, Lin TY, Casner RG, Zakharian E, Sobolevsky AI. Structure of the thermo-sensitive TRP channel TRP1 from the alga Chlamydomonas reinhardtii. Nat Commun. 2019 Sep 13;10(1):4180. doi: 10.1038/s41467-019-12121-9.
PubMed ID: 31519888
Pang SS, Bayly-Jones C, Radjainia M, Spicer BA, Law RHP, Hodel AW, Parsons ES, Ekkel SM, Conroy PJ, Ramm G, Venugopal H, Bird PI, Hoogenboom BW, Voskoboinik I, Gambin Y, Sierecki E, Dunstone MA, Whisstock JC. The cryo-EM structure of the acid activatable pore-forming immune effector Macrophage-expressed gene 1. Nat Commun. 2019 Sep 19;10(1):4288. doi: 10.1038/s41467-019-12279-2.
PubMed ID: 31537793
Tamura T, Hamachi I. Chemistry for Covalent Modification of Endogenous/Native Proteins: From Test Tubes to Complex Biological Systems. J Am Chem Soc. 2019 Feb 20;141(7):2782-2799. doi: 10.1021/jacs.8b11747. Epub 2019 Jan 8.
PubMed ID: 30592612
Tasso TT, Schlothauer JC, Junqueira HC, Matias TA, Araki K, Liandra-Salvador É, Antonio FCT, Homem-de-Mello P, Baptista MS. Photobleaching Efficiency Parallels the Enhancement of Membrane Damage for Porphyrazine Photosensitizers. J Am Chem Soc. 2019 Oct 2;141(39):15547-15556. doi: 10.1021/jacs.9b05991. Epub 2019 Sep 18.
PubMed ID: 31490678
Parveen N, Rydell GE, Larson G, Hytönen VP, Zhdanov VP, Höök F, Block S. Competition for Membrane Receptors: Norovirus Detachment via Lectin Attachment. J Am Chem Soc. 2019 Oct 16;141(41):16303-16311. doi: 10.1021/jacs.9b06036. Epub 2019 Oct 2.
PubMed ID: 31533424
Nakagawara C, Arioka M. Distinct enzymatic and cellular characteristics of two phospholipases A1 in Aspergillus oryzae. Biochem Biophys Res Commun. 2019 Oct 22;518(4):644-650. doi: 10.1016/j.bbrc.2019.08.087. Epub 2019 Aug 26.
PubMed ID: 31466721
Meher G, Sinha S, Pattnaik GP, Ghosh Dastidar S, Chakraborty H. Cholesterol Modulates Membrane Properties and the Interaction of gp41 Fusion Peptide To Promote Membrane Fusion. J Phys Chem B. 2019 Aug 22;123(33):7113-7122. doi: 10.1021/acs.jpcb.9b04577. Epub 2019 Aug 8.
PubMed ID: 31345037
Novak M, Čepin U, Hodnik V, Narat M, Jamnik M, Kraševec N, Sepčić K, Anderluh G. Functional studies of aegerolysin and MACPF-like proteins in Aspergillus niger. Mol Microbiol. 2019 Aug 3. doi: 10.1111/mmi.14360. [Epub ahead of print]
PubMed ID: 31376198
Tronin AY, Maciunas LJ, Grasty KC, Loll PJ, Ambaye HA, Parizzi AA, Lauter V, Geragotelis AD, Freites JA, Tobias DJ, Blasie JK. Voltage-Dependent Profile Structures of a Kv-Channel via Time-Resolved Neutron Interferometry. Biophys J. 2019 Aug 20;117(4):751-766. doi: 10.1016/j.bpj.2019.07.011. Epub 2019 Jul 16.
PubMed ID: 31378315
Nguyen VP, Dixson AC, Barrera FN. The Effect of Phosphatidylserine on a pH-Responsive Peptide Is Defined by Its Noninserting End. Biophys J. 2019 Aug 20;117(4):659-667. doi: 10.1016/j.bpj.2019.07.023. Epub 2019 Jul 22.
PubMed ID: 31400916
Westerfield J, Gupta C, Scott HL, Ye Y, Cameron A, Mertz B, Barrera FN. Ions Modulate Key Interactions between pHLIP and Lipid Membranes. Biophys J. 2019 Sep 3;117(5):920-929. doi: 10.1016/j.bpj.2019.07.034. Epub 2019 Jul 29.
PubMed ID: 31422821
Jõemetsa S, Spustova K, Kustanovich K, Ainla A, Schindler S, Eigler S, Lobovkina T, Lara-Avila S, Jesorka A, Gözen I. Molecular Lipid Films on Microengineering Materials. Langmuir. 2019 Aug 13;35(32):10286-10298. doi: 10.1021/acs.langmuir.9b01120. Epub 2019 Aug 1.
PubMed ID: 31368272
Melcrová A, Pokorna S, Vošahlíková M, Sýkora J, Svoboda P, Hof M, Cwiklik L, Jurkiewicz P. Concurrent Compression of Phospholipid Membranes by Calcium and Cholesterol. Langmuir. 2019 Sep 3;35(35):11358-11368. doi: 10.1021/acs.langmuir.9b00477. Epub 2019 Aug 23.
PubMed ID: 31393734
Engberg O, Scheidt HA, Nyholm TKM, Slotte JP, Huster D. Membrane Localization and Lipid Interactions of Common Lipid-Conjugated Fluorescence Probes. Langmuir. 2019 Sep 10;35(36):11902-11911. doi: 10.1021/acs.langmuir.9b01202. Epub 2019 Aug 29.
PubMed ID: 31424941
Zhao DY, Pöge M, Morizumi T, Gulati S, Van Eps N, Zhang J, Miszta P, Filipek S, Mahamid J, Plitzko JM, Baumeister W, Ernst OP, Palczewski K. Cryo-EM structure of the native rhodopsin dimer in nanodiscs. J Biol Chem. 2019 Sep 27;294(39):14215-14230. doi: 10.1074/jbc.RA119.010089. Epub 2019 Aug 9.
PubMed ID: 31399513
Vernen F, Harvey PJ, Dias SA, Veiga AS, Huang YH, Craik DJ, Lawrence N, Troeira Henriques S. Characterization of Tachyplesin Peptides and Their Cyclized Analogues to Improve Antimicrobial and Anticancer Properties. Int J Mol Sci. 2019 Aug 26;20(17). pii: E4184. doi: 10.3390/ijms20174184.
PubMed ID: 31455019
Philippe GJ, Gaspar D, Sheng C, Huang YH, Benfield AH, Condon ND, Weidmann J, Lawrence N, Löwer A, Castanho MARB, Craik DJ, Troeira Henriques S. Cell Membrane Composition Drives Selectivity and Toxicity of Designed Cyclic Helix-Loop-Helix Peptides with Cell Penetrating and Tumor Suppressor Properties. ACS Chem Biol. 2019 Sep 20;14(9):2071-2087. doi: 10.1021/acschembio.9b00593. Epub 2019 Aug 21.
PubMed ID: 31390185
N'Diaye M, Vergnaud-Gauduchon J, Nicolas V, Faure V, Denis S, Abreu S, Chaminade P, Rosilio V. Mol Pharm. 2019 Sep 3;16(9):4045-4058. doi: 10.1021/acs.molpharmaceut.9b00797. Epub 2019 Aug 13. Hybrid Lipid Polymer Nanoparticles for Combined Chemo- and Photodynamic Therapy.
PubMed ID: 31361499
Tao M, Pandey NK, Barnes R, Han S, Langen R. Structure of Membrane-Bound Huntingtin Exon 1 Reveals Membrane Interaction and Aggregation Mechanisms. Structure. 2019 Aug 26. pii: S0969-2126(19)30274-6. doi: 10.1016/j.str.2019.08.003. [Epub ahead of print]
PubMed ID: 31466833
Kang JH, Ko YT. Enhanced Subcellular Trafficking of Resveratrol Using Mitochondriotropic Liposomes in Cancer Cells. Pharmaceutics. 2019 Aug 20;11(8). pii: E423. doi: 10.3390/pharmaceutics11080423.
PubMed ID: 31434345
Matscheko N, Mayrhofer P, Rao Y, Beier V, Wollert T. Atg11 tethers Atg9 vesicles to initiate selective autophagy. PLoS Biol. 2019 Jul 29;17(7):e3000377. doi: 10.1371/journal.pbio.3000377. eCollection 2019 Jul.
PubMed ID: 31356628
Gong H, Zhang J, Hu X, Li Z, Fa K, Liu H, Waigh TA, McBain A, Lu JR. Hydrophobic Control of the Bioactivity and Cytotoxicity of de Novo-Designed Antimicrobial Peptides. ACS Appl Mater Interfaces. 2019 Sep 25;11(38):34609-34620. doi: 10.1021/acsami.9b10028. Epub 2019 Sep 10.
PubMed ID: 31448889
Jusková P, Schmid YRF, Stucki A, Schmitt S, Held M, Dittrich PS. "Basicles": Microbial Growth and Production Monitoring in Giant Lipid Vesicles. ACS Appl Mater Interfaces. 2019 Sep 25;11(38):34698-34706. doi: 10.1021/acsami.9b12169. Epub 2019 Sep 10.
PubMed ID: 31454223
Mourtada R, Herce HD, Yin DJ, Moroco JA, Wales TE, Engen JR, Walensky LD. Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice. Nat Biotechnol. 2019 Aug 19. doi: 10.1038/s41587-019-0222-z. [Epub ahead of print]
PubMed ID: 31427820
Lin YC, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. Force-induced conformational changes in PIEZO1. Nature. 2019 Sep;573(7773):230-234. doi: 10.1038/s41586-019-1499-2. Epub 2019 Aug 21.
PubMed ID: 31435018
Mungi CV, Bapat NV, Hongo Y, Rajamani S. Formation of Abasic Oligomers in Nonenzymatic Polymerization of Canonical Nucleotides. Life (Basel). 2019 Jul 4;9(3). pii: E57. doi: 10.3390/life9030057.
PubMed ID: 31277469
Kumagai PS, Sousa VK, Donato M, Itri R, Beltramini LM, Araujo APU, Buerck J, Wallace BA, Lopes JLS. Unveiling the binding and orientation of the antimicrobial peptide Plantaricin 149 in zwitterionic and negatively charged membranes. Eur Biophys J. 2019 Oct;48(7):621-633. doi: 10.1007/s00249-019-01387-y. Epub 2019 Jul 19.
PubMed ID: 31324942
Elnahriry KA, Wai DCC, Krishnarjuna B, Badawy NN, Chittoor B, MacRaild CA, Williams-Noonan BJ, Surm JM, Chalmers DK, Zhang AH, Peigneur S, Mobli M, Tytgat J, Prentis P, Norton RS. Structural and functional characterisation of a novel peptide from the Australian sea anemone Actinia tenebrosa. Toxicon. 2019 Oct;168:104-112. doi: 10.1016/j.toxicon.2019.07.002. Epub 2019 Jul 11.
PubMed ID: 31302115
Mayer SF, Ducrey J, Dupasquier J, Haeni L, Rothen-Rutishauser B, Yang J, Fennouri A, Mayer M. Targeting specific membranes with an azide derivative of the pore-forming peptide ceratotoxin A. Biochim Biophys Acta Biomembr. 2019 Oct 1;1861(10):183023. doi: 10.1016/j.bbamem.2019.07.011. Epub 2019 Jul 17.
PubMed ID: 31325418
Dolstra CC, Rinker T, Sankhagowit S, Deng S, Ting C, Dang AT, Kuhl TL, Sasaki DY. Mechanism of Acid-Triggered Cargo Release from Lipid Bilayer-Coated Mesoporous Silica Particles. Langmuir. 2019 Aug 13;35(32):10276-10285. doi: 10.1021/acs.langmuir.9b01087. Epub 2019 Jul 22.
PubMed ID: 31280569
Wolde-Kidan A, Pham QD, Schlaich A, Loche P, Sparr E, Netz RR, Schneck E. Influence of polar co-solutes and salt on the hydration of lipid membranes. Phys Chem Chem Phys. 2019 Aug 21;21(31):16989-17000. doi: 10.1039/c9cp01953g. Epub 2019 Jul 25.
PubMed ID: 31343009
Melcrová A, Pokorna S, Vošahlíková M, Sýkora J, Svoboda P, Hof M, Cwiklik L, Jurkiewicz P. Concurrent Compression of Phospholipid Membranes by Calcium and Cholesterol. Langmuir. 2019 Sep 3;35(35):11358-11368. doi: 10.1021/acs.langmuir.9b00477. Epub 2019 Aug 23.
PubMed ID: 31393734
Kumar S, Scheidt HA, Kaur N, Kang TS, Gahlay GK, Huster D, Mithu VS. Effect of the Alkyl Chain Length of Amphiphilic Ionic Liquids on the Structure and Dynamics of Model Lipid Membranes. Langmuir. 2019 Sep 3. doi: 10.1021/acs.langmuir.9b02128. [Epub ahead of print]
PubMed ID: 31424219
Engberg O, Scheidt HA, Nyholm TKM, Slotte JP, Huster D. Membrane Localization and Lipid Interactions of Common Lipid-Conjugated Fluorescence Probes. Langmuir. 2019 Sep 10;35(36):11902-11911. doi: 10.1021/acs.langmuir.9b01202. Epub 2019 Aug 29.
PubMed ID: 31424941
Burns JR, Morton CJ, Parker MW, Tweten RK. An Intermolecular π-Stacking Interaction Drives Conformational Changes Necessary to β-Barrel Formation in a Pore-Forming Toxin. MBio. 2019 Jul 2;10(4). pii: e01017-19. doi: 10.1128/mBio.01017-19.
PubMed ID: 31266869
Yang X, Zhao J, Duan S, Hou X, Li X, Hu Z, Tang Z, Mo F, Lu X. Enhanced cytotoxic T lymphocytes recruitment targeting tumor vasculatures by endoglin aptamer and IP-10 plasmid presenting liposome-based nanocarriers. Theranostics. 2019 May 31;9(14):4066-4083. doi: 10.7150/thno.33383. eCollection 2019.
PubMed ID: 31281532
Gao Y, Erickson JW, Cerione RA, Ramachandran S. Reconstitution of the Rhodopsin-Transducin Complex into Lipid Nanodiscs. Methods Mol Biol. 2019;2009:317-324. doi: 10.1007/978-1-4939-9532-5_24.
PubMed ID: 31152414
Toshinori Motegi, Hiroyuki Hoshino, Kota Sakamoto, and Fumio Hayashi. Construction of tethered bilayer lipid membrane with oriented membrane proteins on surface modified mica substrate. Japanese Journal of Applied Physics 58, SIIB12 (2019). doi: 10.7567/1347-4065/ab1b6b
Domanska B, Fortea E, West MJ, Schwartz JL, Crickmore N. The role of membrane-bound metal ions in toxicity of a human cancer cell-active pore-forming toxin Cry41Aa from Bacillus thuringiensis. Toxicon. 2019 Sep;167:123-133. doi: 10.1016/j.toxicon.2019.06.003. Epub 2019 Jun 7.
PubMed ID: 31181295
Lv Z, Hashemi M, Banerjee S, Zagorski K, Rochet JC, Lyubchenko YL. Assembly of α-synuclein aggregates on phospholipid bilayers. Biochim Biophys Acta Proteins Proteom. 2019 Sep;1867(9):802-812. doi: 10.1016/j.bbapap.2019.06.006. Epub 2019 Jun 19.
PubMed ID: 31226488
Yang S, Lee CW, Kim HJ, Jung HH, Kim JI, Shin SY, Shin SH. Structural analysis and mode of action of BMAP-27, a cathelicidin-derived antimicrobial peptide. Peptides. 2019 Jun 18;118:170106. doi: 10.1016/j.peptides.2019.170106. [Epub ahead of print]
PubMed ID: 31226350
Kniggendorf AK, Schmidt D, Roth B, Plettenburg O, Zeilinger C. pH-Dependent Conformational Changes of KcsA Tetramer and Monomer Probed by Raman Spectroscopy. Int J Mol Sci. 2019 Jun 4;20(11). pii: E2736. doi: 10.3390/ijms20112736.
PubMed ID: 31167355
Damiati SA, Alaofi AL, Dhar P, Alhakamy NA. Novel machine learning application for prediction of membrane insertion potential of cell-penetrating peptides. Int J Pharm. 2019 Aug 15;567:118453. doi: 10.1016/j.ijpharm.2019.118453. Epub 2019 Jun 21.
PubMed ID: 31233847
Bosse M, Sibold J, Scheidt HA, Patalag LJ, Kettelhoit K, Ries A, Werz DB, Steinem C, Huster D. Shiga toxin binding alters lipid packing and the domain structure of Gb3-containing membranes: a solid-state NMR study. Phys Chem Chem Phys. 2019 Jul 17;21(28):15630-15638. doi: 10.1039/c9cp02501d.
PubMed ID: 31268447
Bradberry MM, Bao H, Lou X, Chapman ER. Phosphatidylinositol 4,5-bisphosphate drives Ca2+-independent membrane penetration by the tandem C2 domain proteins synaptotagmin-1 and Doc2β. J Biol Chem. 2019 Jul 12;294(28):10942-10953. doi: 10.1074/jbc.RA119.007929. Epub 2019 May 30.
PubMed ID: 31147445
Mescola A, Marín-Medina N, Ragazzini G, Accolla M, Alessandrini A. Magainin-H2 effects on the permeabilization and mechanical properties of giant unilamellar vesicles. J Colloid Interface Sci. 2019 Jun 10;553:247-258. doi: 10.1016/j.jcis.2019.06.028. [Epub ahead of print]
PubMed ID: 31207545
Muranishi Y, Sato T, Ito S, Satoh J, Yoshizawa A, Tamari S, Ueda Y, Yutaka Y, Menju T, Nakamura T, Date H. The Ratios of monounsaturated to saturated phosphatidylcholines in lung adenocarcinoma microenvironment analyzed by Liquid Chromatography-Mass spectrometry and imaging Mass spectrometry. Sci Rep. 2019 Jun 20;9(1):8916. doi: 10.1038/s41598-019-45506-3.
PubMed ID: 31222099
Jayaraman S, Fändrich M, Gursky O. Synergy between serum amyloid A and secretory phospholipase A2. Elife. 2019 May 21;8. pii: e46630. doi: 10.7554/eLife.46630.
PubMed ID: 31111824
Ohta K, Ichihashi N. Liposome fragment-mediated introduction of multiple plasmids into Bacillus subtilis. Biochem Biophys Rep. 2019 May 8;18:100646. doi: 10.1016/j.bbrep.2019.100646. eCollection 2019 Jul.
PubMed ID: 31111103
Damiati S, Scheberl A, Zayni S, Damiati SA, Schuster B, Kompella UB. Albumin-bound nanodiscs as delivery vehicle candidates: Development and characterization. Biophys Chem. 2019 Aug;251:106178. doi: 10.1016/j.bpc.2019.106178. Epub 2019 Apr 30.
PubMed ID: 31102749
Lozeau LD, Rolle MW, Camesano TA. Mechanistic predictions of the influence of collagen-binding domain sequences on human LL37 interactions with model lipids using quartz crystal microbalance with dissipation. Biointerphases. 2019 Apr 30;14(2):021006. doi: 10.1116/1.5089759.
PubMed ID: 31039613
Peng W, de Souza Santos M, Li Y, Tomchick DR, Orth K. High-resolution cryo-EM structures of the E. coli hemolysin ClyA oligomers. PLoS One. 2019 May 2;14(5):e0213423. doi: 10.1371/journal.pone.0213423. eCollection 2019.
PubMed ID: 31048915
Salnikov ES, De Zotti M, Bobone S, Mazzuca C, Raya J, Siano AS, Peggion C, Toniolo C, Stella L, Bechinger B. Trichogin GA IV alignment and oligomerization in phospholipid bilayers. Chembiochem. 2019 May 24. doi: 10.1002/cbic.201900263. [Epub ahead of print]
PubMed ID: 31125169
Chang H, Gnanasekaran K, Gianneschi NC, Geiger FM. Bacterial Model Membranes Deform ( resp. Persist) upon Ni2+ Binding to Inner Core ( resp. O-Antigen) of Lipopolysaccharides. J Phys Chem B. 2019 May 16;123(19):4258-4270. doi: 10.1021/acs.jpcb.9b02762. Epub 2019 May 6.
PubMed ID: 31030523
Garg S, Liu Y, Perez-Salas U, Porcar L, Butler PD. Anomalous inter-membrane cholesterol transport in fluid phase phosphoserine vesicles driven by headgroup ordered to disordered entropic transition. Chem Phys Lipids. 2019 May 31;223:104779. doi: 10.1016/j.chemphyslip.2019.05.004. [Epub ahead of print]
PubMed ID: 31153912
Hitchner MA, Santiago-Ortiz LE, Necelis MR, Shirley DJ, Palmer TJ, Tarnawsky KE, Vaden TD, Caputo GA. Activity and characterization of a pH-sensitive antimicrobial peptide. Biochim Biophys Acta Biomembr. 2019 May 8. pii: S0005-2736(19)30097-5. doi: 10.1016/j.bbamem.2019.05.006. [Epub ahead of print]
PubMed ID: 31075228
Chachaj-Brekiesz A, Wnętrzak A, Lipiec E, Dynarowicz-Latka P. Surface interactions determined by stereostructure on the example of 7-hydroxycholesterol epimers - The Langmuir monolayer study. Biochim Biophys Acta Biomembr. 2019 Jul 1;1861(7):1275-1283. doi: 10.1016/j.bbamem.2019.05.005. Epub 2019 May 8.
PubMed ID: 31077675
Hubin E, Verghese PB, van Nuland N, Broersen K. Apolipoprotein E associated with reconstituted high-density lipoprotein-like particles is protected from aggregation. FEBS Lett. 2019 Jun;593(11):1144-1153. doi: 10.1002/1873-3468.13428. Epub 2019 May 27.
PubMed ID: 31058310
Götz A, Mylonas N, Högel P, Silber M, Heinel H, Menig S, Vogel A, Feyrer H, Huster D, Luy B, Langosch D, Scharnagl C, Muhle-Goll C, Kamp F, Steiner H. Modulating Hinge Flexibility in the APP Transmembrane Domain Alters γ-Secretase Cleavage. Biophys J. 2019 Jun 4;116(11):2103-2120. doi: 10.1016/j.bpj.2019.04.030. Epub 2019 May 3.
PubMed ID: 31130234
Palacios-Ortega J, García-Linares S, Rivera-de-Torre E, Gavilanes JG, Martínez-Del-Pozo Á, Slotte JP. Sticholysin, Sphingomyelin, and Cholesterol: A Closer Look at a Tripartite Interaction. Biophys J. 2019 Jun 18;116(12):2253-2265. doi: 10.1016/j.bpj.2019.05.010. Epub 2019 May 16.
PubMed ID: 31146924
Svetlova A, Ellieroth J, Milos F, Maybeck V, Offenhäusser A. Composite Lipid Bilayers from Cell Membrane Extracts and Artificial Mixes as a Cell Culture Platform. Langmuir. 2019 Jun 18;35(24):8076-8084. doi: 10.1021/acs.langmuir.9b00763. Epub 2019 May 31.
PubMed ID: 31055920
Pir Cakmak F, Grigas AT, Keating CD. Lipid Vesicle-Coated Complex Coacervates. Langmuir. 2019 Jun 18;35(24):7830-7840. doi: 10.1021/acs.langmuir.9b00213. Epub 2019 May 24.
PubMed ID: 31091880
Zhang W, Coughlin ML, Metzger JM, Hackel BJ, Bates FS, Lodge TP. Influence of Cholesterol and Bilayer Curvature on the Interaction of PPO-PEO Block Copolymers with Liposomes. Langmuir. 2019 Jun 4;35(22):7231-7241. doi: 10.1021/acs.langmuir.9b00572. Epub 2019 May 22.
PubMed ID: 31117745
Martins PAT, Domingues N, Pires C, Alves AM, Palmeira T, Samelo J, Cardoso R, Velazquez-Campoy A, Moreno MJ. Molecular crowding effects on the distribution of amphiphiles in biological media. Colloids Surf B Biointerfaces. 2019 Aug 1;180:319-325. doi: 10.1016/j.colsurfb.2019.04.065. Epub 2019 Apr 30.
PubMed ID: 31071572
Rovere M, Powers AE, Jiang H, Pitino JC, Fonseca-Ornelas L, Patel DS, Achille A, Langen R, Varkey J, Bartels T. E46K-like α-synuclein mutants increase lipid interactions and disrupt membrane selectivity. J Biol Chem. 2019 Jun 21;294(25):9799-9812. doi: 10.1074/jbc.RA118.006551. Epub 2019 May 2.
PubMed ID: 31048377
Matsuo M, Kan Y, Kurihara K, Jimbo T, Imai M, Toyota T, Hirata Y, Suzuki K, Sugawara T. DNA Length-dependent Division of a Giant Vesicle-based Model Protocell. Sci Rep. 2019 May 6;9(1):6916. doi: 10.1038/s41598-019-43367-4.
PubMed ID: 31061467
Velasco-Olmo A, Ormaetxea Gisasola J, Martinez Galvez JM, Vera Lillo J, Shnyrova AV. Combining patch-clamping and fluorescence microscopy for quantitative reconstitution of cellular membrane processes with Giant Suspended Bilayers. Sci Rep. 2019 May 10;9(1):7255. doi: 10.1038/s41598-019-43561-4.
PubMed ID: 31076583
Maric S, Lind TK, Raida MR, Bengtsson E, Fredrikson GN, Rogers S, Moulin M, Haertlein M, Forsyth VT, Wenk MR, Pomorski TG, Arnebrant T, Lund R, Cárdenas M. Time-resolved small-angle neutron scattering as a probe for the dynamics of lipid exchange between human lipoproteins and naturally derived membranes. Sci Rep. 2019 May 20;9(1):7591. doi: 10.1038/s41598-019-43713-6.
PubMed ID: 31110185
Patel H, Ding B, Ernst K, Shen L, Yuan W, Tang J, Drake LR, Kang J, Li Y, Chen Z, Schwendeman A. Characterization of apolipoprotein A-I peptide phospholipid interaction and its effect on HDL nanodisc assembly. Int J Nanomedicine. 2019 Apr 30;14:3069-3086. doi: 10.2147/IJN.S179837. eCollection 2019.
PubMed ID: 31118623
Hossain KR, Turkewitz DR, Holt SA, Herson L, Brown LJ, Cornell BA, Curmi PMG, Valenzuela SM. A conserved GXXXG motif in the transmembrane domain of CLIC proteins is essential for their cholesterol-dependant membrane interaction. Biochim Biophys Acta Gen Subj. 2019 Aug;1863(8):1243-1253. doi: 10.1016/j.bbagen.2019.04.020. Epub 2019 May 8.
PubMed ID: 31075359
Basu SS, McMinn MH, Giménez-Cassina Lopéz B, Regan MS, Randall EC, Clark AR, Cox CR, Agar NYR. Metal Oxide Laser Ionization Mass Spectrometry Imaging (MOLI MSI) Using Cerium(IV) Oxide. Anal Chem. 2019 May 21;91(10):6800-6807. doi: 10.1021/acs.analchem.9b00894. Epub 2019 May 8.
PubMed ID: 31025851
Uehara Y, Tobian L, Iwai J, Ishii M, Sugimoto T. Alterations of vascular prostacyclin and thromboxane A2 in Dahl genetical strain susceptible to salt-induced hypertension. Prostaglandins. 1987 May;33(5):727-38.
PubMed ID: 31089641
Zhang Y, Gal N, Itel F, Westensee IN, Brodszkij E, Mayer D, Stenger S, Castellote-Borrell M, Boesen T, Tabaei SR, Höök F, Städler B. Hybrid vesicles as intracellular reactive oxygen species and nitric oxide generators. Nanoscale. 2019 Jun 20;11(24):11530-11541. doi: 10.1039/c9nr02584g.
PubMed ID: 31150038
Scarborough EA, Davis TN, Asbury CL. Tight bending of the Ndc80 complex provides intrinsic regulation of its binding to microtubules. Elife. 2019 May 2;8. pii: e44489. doi: 10.7554/eLife.44489.
PubMed ID: 31045495
Houghtaling J, Ying C, Eggenberger OM, Fennouri A, Nandivada S, Acharjee M, Li J, Hall AR, Mayer M. Estimation of Shape, Volume, and Dipole Moment of Individual Proteins Freely Transiting a Synthetic Nanopore. ACS Nano. 2019 May 28;13(5):5231-5242. doi: 10.1021/acsnano.8b09555. Epub 2019 Apr 24.
PubMed ID: 30995394
Harris TA, Gattu S, Propheter DC, Kuang Z, Bel S, Ruhn KA, Chara AL, Edwards M, Zhang C, Jo JH, Raj P, Zouboulis CC, Kong HH, Segre JA, Hooper LV. Resistin-like Molecule α Provides Vitamin-A-Dependent Antimicrobial Protection in the Skin. Cell Host Microbe. 2019 Jun 12;25(6):777-788.e8. doi: 10.1016/j.chom.2019.04.004. Epub 2019 May 14.
PubMed ID: 31101494
Salnikov ES, Aussenac F, Abel S, Purea A, Tordo P, Ouari O, Bechinger B. Dynamic Nuclear Polarization / solid-state NMR of membranes. Thermal effects and sample geometry. Solid State Nucl Magn Reson. 2019 Aug;100:70-76. doi: 10.1016/j.ssnmr.2019.03.004. Epub 2019 Mar 22.
PubMed ID: 30995597
Fayolle D, Berthet N, Doumeche B, Renaudet O, Strazewski P, Fiore M. Towards the preparation of synthetic outer membrane vesicle models with micromolar affinity to wheat germ agglutinin using a dialkyl thioglycoside. Beilstein J Org Chem. 2019 Apr 17;15:937-946. doi: 10.3762/bjoc.15.90. eCollection 2019.
PubMed ID: 31164930
Svetlova A, Ellieroth J, Milos F, Maybeck V, Offenhäusser A. Composite Lipid Bilayers from Cell Membrane Extracts and Artificial Mixes as a Cell Culture Platform. Langmuir. 2019 May 31. doi: 10.1021/acs.langmuir.9b00763. [Epub ahead of print]
PubMed ID: 31055920
Wijeratne TU, Weers PMM. Lipid-bound apoLp-III is less effective in binding to lipopolysaccharides and phosphatidylglycerol vesicles compared to the lipid-free protein. Mol Cell Biochem. 2019 Apr 23. doi: 10.1007/s11010-019-03530-x. [Epub ahead of print]
PubMed ID: 31016454
Lee YH, Lin Y, Cox SJ, Kinoshita M, Sahoo BR, Ivanova M, Ramamoorthy A. Zinc boosts EGCG's hIAPP amyloid Inhibition both in solution and membrane. Biochim Biophys Acta Proteins Proteom. 2019 May;1867(5):529-536. doi: 10.1016/j.bbapap.2018.11.006. Epub 2018 Nov 22.
PubMed ID: 30468883
Kostelic MM, Ryan AM, Reid DJ, Noun JM, Marty MT. Expanding the Types of Lipids Amenable to Native Mass Spectrometry of Lipoprotein Complexes. J Am Soc Mass Spectrom. 2019 Apr 9. doi: 10.1007/s13361-019-02174-x. [Epub ahead of print]
PubMed ID: 30972726
Zappacosta R, Cornelio B, Pilato S, Siani G, Estour F, Aschi M, Fontana A. Effect of the Incorporation of Functionalized Cyclodextrins in the Liposomal Bilayer. Molecules. 2019 Apr 9;24(7). pii: E1387. doi: 10.3390/molecules24071387.
PubMed ID: 30970572
Khondker A, Hub JS, Rheinstädter MC. Steroid-steroid interactions in biological membranes: Cholesterol and cortisone. Chem Phys Lipids. 2019 Jul;221:193-197. doi: 10.1016/j.chemphyslip.2019.04.003. Epub 2019 Apr 3.
PubMed ID: 30951711
Zappacosta R, Aschi M, Ammazzalorso A, Di Profio P, Fontana A, Siani G. Embedding calix[4]resorcinarenes in liposomes: Experimental and computational investigation of the effect of resorcinarene inclusion on liposome properties and stability. Biochim Biophys Acta Biomembr. 2019 Jun 1;1861(6):1252-1259. doi: 10.1016/j.bbamem.2019.04.010. Epub 2019 Apr 25.
PubMed ID: 31028721
Nele V, Holme MN, Kauscher U, Thomas MR, Doutch JJ, Stevens MM. Effect of Formulation Method, Lipid Composition, and PEGylation on Vesicle Lamellarity: A Small-Angle Neutron Scattering Study. Langmuir. 2019 May 7;35(18):6064-6074. doi: 10.1021/acs.langmuir.8b04256. Epub 2019 Apr 12.
PubMed ID: 30977658
Rasmus Eliasen, Thomas L. Andresen, Jannik B. Larsen. PEG‐Lipid Post Insertion into Drug Delivery Liposomes Quantified at the Single Liposome Level. Advanced Materials Interfaces. 2019 April 03. doi: 10.1002/admi.201801807
Harsini FM, Bui AA, Rice AM, Chebrolu S, Fuson KL, Turtoi A, Bradberry M, Chapman ER, Sutton RB. Structural Basis for the Distinct Membrane Binding Activity of the Homologous C2A Domains of Myoferlin and Dysferlin. J Mol Biol. 2019 Apr 18. pii: S0022-2836(19)30188-3. doi: 10.1016/j.jmb.2019.04.006. [Epub ahead of print]
PubMed ID: 31004665
Liu X, Wu G, Yu Y, Chen X, Ji R, Lu J, Li X, Zhang X, Yang X, Shen Y. Molecular understanding of calcium permeation through the open Orai channel. PLoS Biol. 2019 Apr 22;17(4):e3000096. doi: 10.1371/journal.pbio.3000096. eCollection 2019 Apr.
PubMed ID: 31009446
Chrom CL, Renn LM, Caputo GA. Characterization and Antimicrobial Activity of Amphiphilic Peptide AP3 and Derivative Sequences. Antibiotics (Basel). 2019 Mar 6;8(1). pii: E20. doi: 10.3390/antibiotics8010020.
PubMed ID: 30845708
Goto-Ito S, Morooka N, Yamagata A, Sato Y, Sato K, Fukai S. Structural basis of guanine nucleotide exchange for Rab11 by SH3BP5. Life Sci Alliance. 2019 Mar 14;2(2). pii: e201900297. doi: 10.26508/lsa.201900297. Print 2019 Apr.
PubMed ID: 30872413
Julia Genova, Zdravka Slavkova, Hassan Chamati & Minko Petrov. Gel–liquid crystal phase transition in dry and hydrated SOPC phospholipid studied by differential scanning calorimetry. Phase Transitions-A Multinational Journal. 2019 March 01;92(4):323-333. doi: 10.1080/01411594.2019.1580368.
Xu Z, Hao C, Xie B, Sun R. Effect of Fe3O4 Nanoparticles on Mixed POPC/DPPC Monolayers at Air-Water Interface. Scanning. 2019 Mar 3;2019:5712937. doi: 10.1155/2019/5712937. eCollection 2019.
PubMed ID: 30944689
Salnikov ES, Aussenac F, Abel S, Purea A, Tordo P, Ouari O, Bechinger B. Dynamic Nuclear Polarization / solid-state NMR of membranes. Thermal effects and sample geometry. Solid State Nucl Magn Reson. 2019 Mar 22;100:70-76. doi: 10.1016/j.ssnmr.2019.03.004. [Epub ahead of print]
PubMed ID: 30995597
Huff HC, Maroutsos D, Das A. Lipid composition and macromolecular crowding effects on CYP2J2-mediated drug metabolism in nanodiscs. Protein Sci. 2019 May;28(5):928-940. doi: 10.1002/pro.3603. Epub 2019 Apr 1.
PubMed ID: 30861250
Hayashi T, Tsuchikawa H, Umegawa Y, Murata M. Small structural alterations greatly influence the membrane affinity of lipophilic ligands: Membrane interactions of bafilomycin A1 and its desmethyl derivative bearing 19F-labeling. Bioorg Med Chem. 2019 Apr 15;27(8):1677-1682. doi: 10.1016/j.bmc.2019.03.017. Epub 2019 Mar 8.
PubMed ID: 30878192
Ferreyra Maillard APV, Gonçalves S, Santos NC, López de Mishima BA, Dalmasso PR, Hollmann A. Studies on interaction of green silver nanoparticles with whole bacteria by surface characterization techniques. Biochim Biophys Acta Biomembr. 2019 Mar 19;1861(6):1086-1092. doi: 10.1016/j.bbamem.2019.03.011. [Epub ahead of print]
PubMed ID: 30902625
Fensterseifer ICM, Felício MR, Alves ESF, Cardoso MH, Torres MDT, Matos CO, Silva ON, Lu TK, Freire MV, Neves NC, Gonçalves S, Lião LM, Santos NC, Porto WF, de la Fuente-Nunez C, Franco OL. Selective antibacterial activity of the cationic peptide PaDBS1R6 against Gram-negative bacteria. Biochim Biophys Acta Biomembr. 2019 Mar 26. pii: S0005-2736(19)30074-4. doi: 10.1016/j.bbamem.2019.03.016. [Epub ahead of print]
PubMed ID: 30926365
Gomes B, Sanna G, Madeddu S, Hollmann A, Santos NC. Combining 25-Hydroxycholesterol with an HIV Fusion Inhibitor Peptide: Interaction with Biomembrane Model Systems and Human Blood Cells. ACS Infect Dis. 2019 Apr 12;5(4):582-591. doi: 10.1021/acsinfecdis.8b00321. Epub 2019 Feb 28.
PubMed ID: 30816690
Möuts A, Yamamoto T, Nyholm TKM, Murata M, Slotte JP. Nonlamellar-Phase-Promoting Colipids Enhance Segregation of Palmitoyl Ceramide in Fluid Bilayers. Biophys J. 2019 Mar 19. pii: S0006-3495(19)30190-0. doi: 10.1016/j.bpj.2019.03.004. [Epub ahead of print]
PubMed ID: 30940348
Farell M, Wetherington M, Shankla M, Chae I, Subramanian S, Kim SH, Aksimentiev A, Robinson J, Kumar M. Characterization of the Lipid Structure and Fluidity of Lipid Membranes on Epitaxial Graphene and Their Correlation to Graphene Features. Langmuir. 2019 Apr 2;35(13):4726-4735. doi: 10.1021/acs.langmuir.9b00164. Epub 2019 Mar 18.
PubMed ID: 30844287
Ruokonen SK, Ekholm FS, Wiedmer SK. Assessing the Interactions of Auristatin Derivatives with Mixed Phospholipid-Sodium Dodecyl Sulfate Aggregate Dispersions. Langmuir. 2019 Apr 16;35(15):5232-5240. doi: 10.1021/acs.langmuir.9b00116. Epub 2019 Apr 3.
PubMed ID: 30889955
Herzog M, Dwivedi M, Kumar Harishchandra R, Bilstein A, Galla HJ, Winter R. Effect of ectoine, hydroxyectoine and β-hydroxybutyrate on the temperature and pressure stability of phospholipid bilayer membranes of different complexity. Colloids Surf B Biointerfaces. 2019 Mar 16;178:404-411. doi: 10.1016/j.colsurfb.2019.03.026. [Epub ahead of print]
PubMed ID: 30903979
Gomara MJ, Perez Y, Martinez JP, Barnadas-Rodriguez R, Schultz A, von Briesen H5, Peralvarez-Marin A, Meyerhans A, Haro I. Peptide Assembly on the Membrane Determines the HIV-1 Inhibitory Activity of Dual-Targeting Fusion Inhibitor Peptides. Sci Rep. 2019 Mar 1;9(1):3257. doi: 10.1038/s41598-019-40125-4.
PubMed ID: 30824796
Panevska A, Hodnik V, Skočaj M, Novak M, Modic Š, Pavlic I, Podržaj S, Zarić M, Resnik N, Maček P, Veranič P, Razinger J, Sepčić K. Pore-forming protein complexes from Pleurotus mushrooms kill western corn rootworm and Colorado potato beetle through targeting membrane ceramide phosphoethanolamine. Sci Rep. 2019 Mar 25;9(1):5073. doi: 10.1038/s41598-019-41450-4.
PubMed ID: 30911026
Waldie S, Moulin M, Porcar L, Pichler H, Strohmeier GA, Skoda M, Forsyth VT, Haertlein M, Maric S, Cárdenas M. The Production of Matchout-Deuterated Cholesterol and the Study of Bilayer-Cholesterol Interactions. Sci Rep. 2019 Mar 26;9(1):5118. doi: 10.1038/s41598-019-41439-z.
PubMed ID: 30914734
Fangjie Liu, Steven M. Abel, Liam Collins, Bernadeta R. Srijanto, Robert Standaert, John Katsaras, Charles Patrick Collier. Geometry‐Dependent Nonequilibrium Steady‐State Diffusion and Adsorption of Lipid Vesicles in Micropillar Arrays. Advanced Material Interfaces. 2019 March 18. doi: 10.1002/admi.201900054
Bozdaganyan ME, Lokhmatikov AV, Voskoboynikova N, Cherepanov DA, Steinhoff HJ, Shaitan KV, Mulkidjanian AY. Proton leakage across lipid bilayers: Oxygen atoms of phospholipid ester linkers align water molecules into transmembrane water wires. Biochim Biophys Acta Bioenerg. 2019 Mar 20;1860(6):439-451. doi: 10.1016/j.bbabio.2019.03.001. [Epub ahead of print]
PubMed ID: 30904457
Jeanne Dit Fouque K, Ramirez CE, Lewis RL, Koelmel JP, Garrett TJ, Yost RA, Fernandez-Lima F. Effective Liquid Chromatography-Trapped Ion Mobility Spectrometry-Mass Spectrometry Separation of Isomeric Lipid Species. Anal Chem. 2019 Apr 16;91(8):5021-5027. doi: 10.1021/acs.analchem.8b04979. Epub 2019 Apr 4.
PubMed ID: 30896930
Ewald M, Henry S, Lambert E, Feuillie C, Bobo C, Cullin C, Lecomte S, Molinari M. High speed atomic force microscopy to investigate the interactions between toxic Aβ1-42 peptides and model membranes in real time: impact of the membrane composition. Nanoscale. 2019 Apr 11;11(15):7229-7238. doi: 10.1039/c8nr08714h.
PubMed ID: 30924478
Alvadia C, Lim NK, Clerico Mosina V, Oostergetel GT, Dutzler R, Paulino C. Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F. Elife. 2019 Feb 20;8. pii: e44365. doi: 10.7554/eLife.44365.
PubMed ID: 30785399
Quade B, Camacho M, Zhao X, Orlando M, Trimbuch T, Xu J, Li W, Nicastro D, Rosenmund C, Rizo J. Membrane bridging by Munc13-1 is crucial for neurotransmitter release. Elife. 2019 Feb 28;8. pii: e42806. doi: 10.7554/eLife.42806.
PubMed ID: 30816091
Nguyen VP, Palanikumar L, Kennel SJ, Alves DS, Ye Y, Wall JS, Magzoub M, Barrera FN. Mechanistic insights into the pH-dependent membrane peptide ATRAM. J Control Release. 2019 Mar 28;298:142-153. doi: 10.1016/j.jconrel.2019.02.010. Epub 2019 Feb 11.
PubMed ID: 30763623
Zhou H, Wei Z, Wang S, Yao D, Zhang R, Ma C. Structural and Functional Analysis of the CAPS SNARE-Binding Domain Required for SNARE Complex Formation and Exocytosis. Cell Rep. 2019 Mar 19;26(12):3347-3359.e6. doi: 10.1016/j.celrep.2019.02.064.
PubMed ID: 30893606
Hill SE, Kauffman KJ, Krout M, Richmond JE, Melia TJ, Colón-Ramos DA. Maturation and Clearance of Autophagosomes in Neurons Depends on a Specific Cysteine Protease Isoform, ATG-4.2. Dev Cell. 2019 Mar 8. pii: S1534-5807(19)30104-2. doi: 10.1016/j.devcel.2019.02.013. [Epub ahead of print]
PubMed ID: 30880001
Ren C, Yuan Q, Braun M, Zhang X, Petri B, Zhang J, Kim D, Guez-Haddad J, Xue W, Pan W, Fan R, Kubes P, Sun Z, Opatowsky Y, Polleux F, Karatekin E, Tang W, Wu D. Leukocyte Cytoskeleton Polarization Is Initiated by Plasma Membrane Curvature from Cell Attachment. Dev Cell. 2019 Mar 23. pii: S1534-5807(19)30146-7. doi: 10.1016/j.devcel.2019.02.023. [Epub ahead of print]
PubMed ID: 30930167
Chen CH, Starr CG, Troendle E, Wiedman G, Wimley WC, Ulmschneider JP, Ulmschneider MB. Simulation-Guided Rational de Novo Design of a Small Pore-Forming Antimicrobial Peptide. J Am Chem Soc. 2019 Mar 27;141(12):4839-4848. doi: 10.1021/jacs.8b11939. Epub 2019 Mar 13.
PubMed ID: 30839209
Jeanne Dit Fouque K, Ramirez CE, Lewis RL, Koelmel JP, Garrett TJ, Yost RA, Fernandez-Lima F1. Effective Liquid Chromatography-Trapped Ion Mobility Spectrometry-Mass Spectrometry Separation of Isomeric Lipid Species. Anal Chem. 2019 Apr 4. doi: 10.1021/acs.analchem.8b04979. [Epub ahead of print]
PubMed ID: 30896930
Ruokonen SK, Ekholm FS, Wiedmer SK. Assessing the Interactions of Auristatin Derivatives with Mixed Phospholipid-Sodium Dodecyl Sulfate Aggregate Dispersions. Langmuir. 2019 Apr 3. doi: 10.1021/acs.langmuir.9b00116. [Epub ahead of print]
PubMed ID: 30889955
Kim SY, Pittman AE, Zapata-Mercado E, King GM, Wimley WC, Hristova K1. Mechanism of Action of Peptides That Cause the pH-Triggered Macromolecular Poration of Lipid Bilayers. J Am Chem Soc. 2019 Apr 10. doi: 10.1021/jacs.9b01970. [Epub ahead of print]
PubMed ID: 30916949
Nele V, Holme MN, Kauscher U, Thomas MR, Doutch JJ, Stevens MM. Effect of Formulation Method, Lipid Composition, and PEGylation on Vesicle Lamellarity: A Small-Angle Neutron Scattering Study. Langmuir. 2019 Apr 12. doi: 10.1021/acs.langmuir.8b04256. [Epub ahead of print]
PubMed ID: 30977658
Maroutsos D, Huff H, Das A. Bacterial Expression of Membrane-Associated Cytochrome P450s and Their Activity Assay in Nanodiscs. Methods Mol Biol. 2019;1927:47-72. doi: 10.1007/978-1-4939-9142-6_5.
PubMed ID: 30788785
Kenoth R, Brown RE, Kamlekar RK. In Vitro Measurement of Sphingolipid Intermembrane Transport Illustrated by GLTP Superfamily Members. Methods Mol Biol. 2019;1949:237-256. doi: 10.1007/978-1-4939-9136-5_17.
PubMed ID: 30790260
Jowett Laura A., Gale Philip A. Supramolecular methods: the chloride/nitrate transmembrane exchange assay. Supramolecular Chemistry. 2019 Feb 11. doi: 10.1080/10610278.2019.1574017
Furini LN, Morato LFC, Olivier DS, Lemos M, Feitosa E, Constantino CJL. Interactions of Lipid Polar Headgroups with Carbendazim Fungicide. J Nanosci Nanotechnol. 2019 Jul 1;19(7):3734-3743. doi: 10.1166/jnn.2019.16739.
PubMed ID: 30764929
Lukasz Sobotta, Sebastian Lijewski, Jolanta Dlugaszewska, Joanna Nowicka, Jadwiga Mielcarek, Tomasz Goslinski. Photodynamic inactivation of Enterococcus faecalis by conjugates of zinc(II) phthalocyanines with thymol and carvacrol loaded into lipid vesicles. Inorganica Chimica Acta. 2019 April 1;489:180-189. doi: 10.1016/j.ica.2019.02.031
Müller S, Kind M, Gruhle K, Hause G, Meister A, Drescher S. Mixing behaviour of bilayer-forming phosphatidylcholines with single-chain alkyl-branched bolalipids: effect of lateral chain length. Biophys Chem. 2019 Jan;244:1-10. doi: 10.1016/j.bpc.2018.10.003. Epub 2018 Oct 24.
PubMed ID: 30388712
Ghelfi M, Maddalena LA, Stuart JA, Atkinson J, Harroun TA, Marquardt D. Vitamin E-inspired multi-scale imaging agent. Bioorg Med Chem Lett. 2019 Jan 1;29(1):107-114. doi: 10.1016/j.bmcl.2018.10.052. Epub 2018 Nov 2.
PubMed ID: 30459096
Haihong Huang, Baosheng Ge, Chenghao Sun, Shuai Zhang, Fang Huang. Membrane curvature affects the stability and folding kinetics of bacteriorhodopsin. Process Biochemistry. 2019 January;76:111-117.
Lukasz Sobotta, Jolanta Dlugaszewska, Daniel Ziental, Wojciech Szczolko, Tomasz Koczorowski, Tomasz Goslinski, Jadwiga Mielcarek. Optical properties of a series of pyrrolyl-substituted porphyrazines and their photoinactivation potential against Enterococcus faecalis after incorporation into liposomes. Journal of Photochemistry and Photobiology A: Chemistry. 2019 January 1;368:104-109. doi: 10.1016/j.jphotochem.2018.09.015
Dr. Neta Varsano, Fabio Beghi, Dr. Tali Dadosh, Dr. Nadav Elad, Dr. Eva Pereiro, Prof. Gilad Haran, Prof. Leslie Leiserowitz, Prof. Lia Addadi. The Effect of the Phospholipid Bilayer Environment on Cholesterol Crystal Polymorphism. Chem Plus. 2019 April;84.4:338-344.
McDonald SK, Levitz TS, Valiyaveetil FI. A Shared Mechanism for the Folding of Voltage-Gated K+ Channels. Biochemistry. 2019 Mar 26;58(12):1660-1671. doi: 10.1021/acs.biochem.9b00068. Epub 2019 Mar 7.
PubMed ID: 30793887
Monnier N, Furlan AL, Buchoux S, Deleu M, Dauchez M, Rippa S, Sarazin C. Exploring the Dual Interaction of Natural Rhamnolipids with Plant and Fungal Biomimetic Plasma Membranes through Biophysical Studies. Int J Mol Sci. 2019 Feb 26;20(5). pii: E1009. doi: 10.3390/ijms20051009.
PubMed ID: 30813553
White CR, Datta G, Wilson L, Palgunachari MN, Anantharamaiah GM. The apoA-I mimetic peptide 4F protects apolipoprotein A-I from oxidative damage. Chem Phys Lipids. 2019 Mar;219:28-35. doi: 10.1016/j.chemphyslip.2019.01.009. Epub 2019 Jan 29.
PubMed ID: 30707910
Bali AP, Sahu ID, Craig AF, Clark EE, Burridge KM, Dolan MT, Dabney-Smith C, Konkolewicz D, Lorigan GA. Structural characterization of styrene-maleic acid copolymer-lipid nanoparticles (SMALPs) using EPR spectroscopy. Chem Phys Lipids. 2019 Feb 20;220:6-13. doi: 10.1016/j.chemphyslip.2019.02.003. [Epub ahead of print]
PubMed ID: 30796886
Lopes SC, Ivanova G, de Castro B, Gameiro P. Cardiolipin and phosphatidylethanolamine role in dibucaine interaction with the mitochondrial membrane. Biochim Biophys Acta Biomembr. 2019 Mar 3. pii: S0005-2736(19)30050-1. doi: 10.1016/j.bbamem.2019.02.011. [Epub ahead of print]
PubMed ID: 30840858
Lai YC, Li CC, Sung TC, Chang CW, Lan YJ, Chiang YW. The role of cardiolipin in promoting the membrane pore-forming activity of BAX oligomers. Biochim Biophys Acta Biomembr. 2019 Jan;1861(1):268-280. doi: 10.1016/j.bbamem.2018.06.014. Epub 2018 Jun 26.
PubMed ID: 29958826
Cornelio K, Espiritu RA, Hanashima S, Todokoro Y, Malabed R, Kinoshita M, Matsumori N, Murata M, Nishimura S, Kakeya H, Yoshida M, Matsunaga S. Theonellamide A, a marine-sponge-derived bicyclic peptide, binds to cholesterol in aqueous DMSO: Solution NMR-based analysis of peptide-sterol interactions using hydroxylated sterol. Biochim Biophys Acta Biomembr. 2019 Jan;1861(1):228-235. doi: 10.1016/j.bbamem.2018.07.010. Epub 2018 Jul 25.
PubMed ID: 30055131
Pan J, Dalzini A, Song L. Cholesterol and phosphatidylethanolamine lipids exert opposite effects on membrane modulations caused by the M2 amphipathic helix. Biochim Biophys Acta Biomembr. 2019 Jan;1861(1):201-209. doi: 10.1016/j.bbamem.2018.07.013. Epub 2018 Jul 30.
PubMed ID: 30071193
Salvador D, Glavier M, Schoehn G, Phan G, Taveau JC, Decossas M, Lecomte S, Mongrand S, Garnier C, Broutin I, Daury L, Lambert O. Minimal nanodisc without exogenous lipids for stabilizing membrane proteins in detergent-free buffer. Biochim Biophys Acta Biomembr. 2019 Apr 1;1861(4):852-860. doi: 10.1016/j.bbamem.2019.01.013. Epub 2019 Jan 30.
PubMed ID: 30707889
Wnętrzak A, Chachaj-Brekiesz A, Janikowska-Sagan M, Dynarowicz-Latka P. Influence of 7α-hydroxycholesterol on sphingomyelin and sphingomyelin/phosphatidylcholine films - The Langmuir monolayer study complemented with theoretical calculations. Biochim Biophys Acta Biomembr. 2019 Apr 1;1861(4):861-870. doi: 10.1016/j.bbamem.2019.01.020. Epub 2019 Feb 1.
PubMed ID: 30716293
Perez-Lopez MI, Mendez-Reina R, Trier S, Herrfurth C, Feussner I, Bernal A, Forero-Shelton M, Leidy C. Variations in carotenoid content and acyl chain composition in exponential, stationary and biofilm states of Staphylococcus aureus, and their influence on membrane biophysical properties. Biochim Biophys Acta Biomembr. 2019 May 1;1861(5):978-987. doi: 10.1016/j.bbamem.2019.02.001. Epub 2019 Feb 13.
PubMed ID: 30771288
Toniolo SP, Afkhami S, Mahmood A, Fradin C, Lichty BD, Miller MS, Xing Z, Cranston ED, Thompson MR. Excipient selection for thermally stable enveloped and non-enveloped viral vaccine platforms in dry powders. Int J Pharm. 2019 Apr 20;561:66-73. doi: 10.1016/j.ijpharm.2019.02.035. Epub 2019 Feb 28.
PubMed ID: 30825554
Agamasu C, Ghirlando R, Taylor T, Messing S, Tran TH, Bindu L, Tonelli M, Nissley DV, McCormick F4, Stephen AG. KRAS Prenylation Is Required for Bivalent Binding with Calmodulin in a Nucleotide-Independent Manner. Biophys J. 2019 Mar 19;116(6):1049-1063. doi: 10.1016/j.bpj.2019.02.004. Epub 2019 Feb 15.
PubMed ID: 30846362
Lira RB, Robinson T, Dimova R, Riske KA. Highly Efficient Protein-free Membrane Fusion: A Giant Vesicle Study. Biophys J. 2019 Jan 8;116(1):79-91. doi: 10.1016/j.bpj.2018.11.3128. Epub 2018 Dec 1.
PubMed ID: 30579564
Nyholm TKM, Jaikishan S, Engberg O, Hautala V, Slotte JP. The Affinity of Sterols for Different Phospholipid Classes and Its Impact on Lateral Segregation. Biophys J. 2019 Jan 22;116(2):296-307. doi: 10.1016/j.bpj.2018.11.3135. Epub 2018 Dec 6.
PubMed ID: 30583790
Wang A, Chan Miller C, Szostak JW. Core-Shell Modeling of Light Scattering by Vesicles: Effect of Size, Contents, and Lamellarity. Biophys J. 2019 Feb 19;116(4):659-669. doi: 10.1016/j.bpj.2019.01.006. Epub 2019 Jan 10.
PubMed ID: 30686489
Doktorova M, Heberle FA, Marquardt D, Rusinova R, Sanford RL, Peyear TA, Katsaras J, Feigenson GW, Weinstein H, Andersen OS. Gramicidin Increases Lipid Flip-Flop in Symmetric and Asymmetric Lipid Vesicles. Biophys J. 2019 Mar 5;116(5):860-873. doi: 10.1016/j.bpj.2019.01.016. Epub 2019 Jan 25.
PubMed ID: 30755300
Al Sazzad MA, Möuts A, Palacios-Ortega J, Lin KL, Nyholm TKM, Slotte JP. Natural Ceramides and Lysophospholipids Cosegregate in Fluid Phosphatidylcholine Bilayers. Biophys J. 2019 Mar 19;116(6):1105-1114. doi: 10.1016/j.bpj.2019.02.002. Epub 2019 Feb 10.
PubMed ID: 30795873
Ajjaji D, Ben M'barek K, Mimmack ML, England C, Herscovitz H, Dong L, Kay RG, Patel S, Saudek V, Small DM, Savage DB, Thiam AR. Dual binding motifs underpin the hierarchical association of perilipins1-3 with lipid droplets. Mol Biol Cell. 2019 Mar 1;30(5):703-716. doi: 10.1091/mbc.E18-08-0534. Epub 2019 Jan 16.
PubMed ID: 30649995
Palazzo C, Laloy J, Delvigne AS, Nys G, Fillet M, Dogne JM, Pequeux C, Foidart JM, Evrard B, Piel G. Development of injectable liposomes and drug-in-cyclodextrin-in-liposome formulations encapsulating estetrol to prevent cerebral ischemia of premature babies. Eur J Pharm Sci. 2019 Jan 15;127:52-59. doi: 10.1016/j.ejps.2018.10.006. Epub 2018 Oct 9.
PubMed ID: 30308312
Luchini A, Nzulumike ANO, Lind TK, Nylander T, Barker R, Arleth L, Mortensen K, Cárdenas M. Towards biomimics of cell membranes: Structural effect of phosphatidylinositol triphosphate (PIP3) on a lipid bilayer. Colloids Surf B Biointerfaces. 2019 Jan 1;173:202-209. doi: 10.1016/j.colsurfb.2018.09.031. Epub 2018 Sep 22.
PubMed ID: 30292933
Harper RA, Carpenter GH, Proctor GB, Harvey RD, Gambogi RJ, Geonnotti AR, Hider R, Jones SA. Diminishing biofilm resistance to antimicrobial nanomaterials through electrolyte screening of electrostatic interactions. Colloids Surf B Biointerfaces. 2019 Jan 1;173:392-399. doi: 10.1016/j.colsurfb.2018.09.018. Epub 2018 Sep 12.
PubMed ID: 30317126
Zhang Z, Hao C, Qu H, Sun R. Studied on the dynamic adsorption process of Lycium barbarum polysaccharide in the POPC/DPPC monolayers. Colloids Surf B Biointerfaces. 2019 Feb 22;178:38-43. doi: 10.1016/j.colsurfb.2019.02.046. [Epub ahead of print]
PubMed ID: 30826552
Kumagai A, Dupuy FG, Arsov Z, Elhady Y, Moody D, Ernst RK, Deslouches B, Montelaro RC, Peter Di Y, Tristram-Nagle S. Elastic behavior of model membranes with antimicrobial peptides depends on lipid specificity and d-enantiomers. Soft Matter. 2019 Feb 20;15(8):1860-1868. doi: 10.1039/c8sm02180e.
PubMed ID: 30702120
Johansen NT, Tidemand FG, Nguyen TTTN, Rand KD, Pedersen MC, Arleth L. Circularized and solubility-enhanced MSPs facilitate simple and high-yield production of stable nanodiscs for studies of membrane proteins in solution. FEBS J. 2019 Jan 23. doi: 10.1111/febs.14766. [Epub ahead of print]
PubMed ID: 30675761
Wan F, Nylander T, Foged C, Yang M, Baldursdottir SG, Nielsen HM. Qualitative and quantitative analysis of the biophysical interaction of inhaled nanoparticles with pulmonary surfactant by using quartz crystal microbalance with dissipation monitoring. J Colloid Interface Sci. 2019 Mar 1;545:162-171. doi: 10.1016/j.jcis.2019.02.088. [Epub ahead of print]
PubMed ID: 30877998
Chih YH, Wang SY, Yip BS, Cheng KT, Hsu SY, Wu CL, Yu HY, Cheng JW. Dependence on size and shape of non-nature amino acids in the enhancement of lipopolysaccharide (LPS) neutralizing activities of antimicrobial peptides. J Colloid Interface Sci. 2019 Jan 1;533:492-502. doi: 10.1016/j.jcis.2018.08.042. Epub 2018 Aug 14.
PubMed ID: 30176540
Chalupska D, Różycki B, Humpolickova J, Faltova L, Klima M, Boura E. Phosphatidylinositol 4-kinase IIIβ (PI4KB) forms highly flexible heterocomplexes that include ACBD3, 14-3-3, and Rab11 proteins. Sci Rep. 2019 Jan 24;9(1):567. doi: 10.1038/s41598-018-37158-6.
PubMed ID: 30679637
Kim A, Ng WB, Bernt W, Cho NJ. Validation of Size Estimation of Nanoparticle Tracking Analysis on Polydisperse Macromolecule Assembly. Sci Rep. 2019 Feb 25;9(1):2639. doi: 10.1038/s41598-019-38915-x.
PubMed ID: 30804441
Gluvić A, Ulrih NP. Peptides derived from food sources: Antioxidative activities and interactions with model lipid membranes. Food Chem. 2019 Jul 30;287:324-332. doi: 10.1016/j.foodchem.2019.02.092. Epub 2019 Feb 28.
PubMed ID: 30857706
Chang EH, Huang J, Lin Z, Brown AC. Catechin-mediated restructuring of a bacterial toxin inhibits activity. Biochim Biophys Acta Gen Subj. 2019 Jan;1863(1):191-198. doi: 10.1016/j.bbagen.2018.10.011. Epub 2018 Oct 17.
PubMed ID: 30342156
Jayaraman S, Baveghems C, Chavez OR, Rivas-Urbina A, Sánchez-Quesada JL, Gursky O. Effects of triacylglycerol on the structural remodeling of human plasma very low- and low-density lipoproteins. Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Mar 5. pii: S1388-1981(19)30032-0. doi: 10.1016/j.bbalip.2019.03.001. [Epub ahead of print]
PubMed ID: 30844432
Artim CM, Brown JS, Alabi CA. Biophysical Characterization of Cationic Antibacterial Oligothioetheramides. Anal Chem. 2019 Feb 19;91(4):3118-3124. doi: 10.1021/acs.analchem.8b05721. Epub 2019 Feb 6.
PubMed ID: 30675774
Ho JCS, Steininger C, Hiew SH, Kim MC, Reimhult E, Miserez A, Cho N, Parikh AN, Liedberg B. Minimal Reconstitution of Membranous Web Induced by a Vesicle-Peptide Sol-Gel Transition. Biomacromolecules. 2019 Mar 26. doi: 10.1021/acs.biomac.9b00081. [Epub ahead of print]
PubMed ID: 30856330
Amdursky N, Lin Y, Aho N, Groenhof G. Exploring fast proton transfer events associated with lateral proton diffusion on the surface of membranes. Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2443-2451. doi: 10.1073/pnas.1812351116. Epub 2019 Jan 24.
PubMed ID: 30679274
Mittermeier L, Demirkhanyan L, Stadlbauer B, Breit A, Recordati C, Hilgendorff A, Matsushita M, Braun A, Simmons DG, Zakharian E, Gudermann T, Chubanov V. TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival. Proc Natl Acad Sci U S A. 2019 Feb 15. pii: 201810633. doi: 10.1073/pnas.1810633116. [Epub ahead of print]
PubMed ID: 30770447
Arnott PM, Howorka S. A Temperature-Gated Nanovalve Self-Assembled from DNA to Control Molecular Transport across Membranes. ACS Nano. 2019 Feb 22. doi: 10.1021/acsnano.8b09200. [Epub ahead of print]
PubMed ID: 30794375
Wu X, Cai Q, Shen Z, Chen X, Zeng M, Du S, Zhang M. RIM and RIM-BP Form Presynaptic Active-Zone-like Condensates via Phase Separation. Mol Cell. 2019 Mar 7;73(5):971-984.e5. doi: 10.1016/j.molcel.2018.12.007. Epub 2019 Jan 17.
PubMed ID: 30661983
Yeliseev A. Expression and Preparation of a G-Protein-Coupled Cannabinoid Receptor CB2 for NMR Structural Studies. Curr Protoc Protein Sci. 2019 Jan 9:e83. doi: 10.1002/cpps.83. [Epub ahead of print]
PubMed ID: 30624864
Fracasso G, Körner Y, Gonzales DTT, Dora Tang TY. In vitro gene expression and detergent-free reconstitution of active proteorhodopsin in lipid vesicles. xp Biol Med (Maywood). 2019 Jan 10:1535370218820290. doi: 10.1177/1535370218820290. [Epub ahead of print]
PubMed ID: 30630374
Farell M, Wetherington M, Shankla M, Chae I, Subramanian S, Kim SH, Aksimentiev A, Robinson J, Kumar M. Characterization of the Lipid Structure and Fluidity of Lipid Membranes on Epitaxial Graphene and Their Correlation to Graphene Features. Langmuir. 2019 Mar 18. doi: 10.1021/acs.langmuir.9b00164. [Epub ahead of print]
PubMed ID: 30844287
Dixit G, Sahu ID, Reynolds WD, Wadsworth TM, Harding BD, Jaycox CK, Dabney-Smith C, Sanders CR, Lorigan GA. Probing the Dynamics and Structural Topology of the Reconstituted Human KCNQ1 Voltage Sensor Domain (Q1-VSD) in Lipid Bilayers Using Electron Paramagnetic Resonance Spectroscopy. Biochemistry. 2019 Feb 19;58(7):965-973. doi: 10.1021/acs.biochem.8b01042. Epub 2019 Jan 30.
PubMed ID: 30620191
Todorov PT, Peneva PN, Georgieva SI, Tchekalarova J, Vitkova V, Antonova K, Georgiev A. Synthesis, characterization and anticonvulsant activity of new azobenzene-containing VV-hemorphin-5 bio photoswitch. Amino Acids. 2019 Jan 2. doi: 10.1007/s00726-018-02691-1. [Epub ahead of print]
PubMed ID: 30604096
Henneberger L, Mühlenbrink M, Fischer FC, Escher BI. C18-coated solid phase microextraction fibers for the quantification of partitioning of organic acids to proteins, lipids and cells. Chem Res Toxicol. 2018 Dec 26. doi: 10.1021/acs.chemrestox.8b00249. [Epub ahead of print]
PubMed ID: 30585484
Wozny K, Lehmann WD, Wozny M, Akbulut BS, Brügger B. A method for the quantitative determination of glycerophospholipid regioisomers by UPLC-ESI-MS/MS. Anal Bioanal Chem. 2019 Feb;411(4):915-924. doi: 10.1007/s00216-018-1517-5. Epub 2018 Dec 22.
PubMed ID: 30580388
Franklin ET, Betancourt SK, Randolph CE, McLuckey SA, Xia Y. In-depth structural characterization of phospholipids by pairing solution photochemical reaction with charge inversion ion/ion chemistry. Anal Bioanal Chem. 2019 Jan 7. doi: 10.1007/s00216-018-1537-1. [Epub ahead of print]
PubMed ID: 30613841
Galiullina LF, Scheidt HA, Huster D, Aganov A, Klochkov V. Interaction of statins with phospholipid bilayers studied by solid-state NMR spectroscopy. Biochim Biophys Acta Biomembr. 2019 Mar 1;1861(3):584-593. doi: 10.1016/j.bbamem.2018.12.013. Epub 2018 Dec 20.
PubMed ID: 30578770
Tsubone TM, Junqueira HC, Baptista MS, Itri R. Contrasting roles of oxidized lipids in modulating membrane microdomains. Biochim Biophys Acta Biomembr. 2019 Mar 1;1861(3):660-669. doi: 10.1016/j.bbamem.2018.12.017. Epub 2018 Dec 31.
PubMed ID: 30605637
Ruchala P, Waring AJ, Cilluffo M, Whitelegge JP, Gundersen CB. Insights into the structure and molecular topography of the fatty acylated domain of synaptotagmin-1.Biochim Biophys Acta Biomembr. 2019 Mar 1;1861(3):677-684. doi: 10.1016/j.bbamem.2018.12.019. Epub 2019 Jan 4.
PubMed ID: 30615859
Amaral VSG, Fernandes CM, Felício MR, Valle AS, Quintana PG, Almeida CC, Barreto-Bergter E, Gonçalves S, Santos NC, Kurtenbach E. Psd2 pea defensin shows a preference for mimetic membrane rafts enriched with glucosylceramide and ergosterol. Biochim Biophys Acta Biomembr. 2019 Apr 1;1861(4):713-728. doi: 10.1016/j.bbamem.2018.12.020. Epub 2019 Jan 10.
PubMed ID: 30639288
Wang A, Chan Miller C, Szostak JW. Core-Shell Modeling of Light Scattering by Vesicles: Effect of Size, Contents, and Lamellarity. Biophys J. 2019 Feb 19;116(4):659-669. doi: 10.1016/j.bpj.2019.01.006. Epub 2019 Jan 10.
PubMed ID: 30686489
Mustafa G, Nandekar PP, Camp TJ, Bruce NJ, Gregory MC, Sligar SG, Wade RC. Influence of Transmembrane Helix Mutations on Cytochrome P450-Membrane Interactions and Function. Biophys J. 2019 Feb 5;116(3):419-432. doi: 10.1016/j.bpj.2018.12.014. Epub 2019 Jan 3.
PubMed ID: 30658838
Brander S, Jank T, Hugel T. AFM Imaging Suggests Receptor Free Penetration of Lipid Bilayers by Toxins. Langmuir. 2018 Dec 19. doi: 10.1021/acs.langmuir.8b03146. [Epub ahead of print]
PubMed ID: 30565941
Virk MM, Hofmann B, Reimhult E. Formation and Characteristics of Lipid Blended Block Copolymer Bilayers on Solid Support Investigated by Quartz Crystal Microbalance and Atomic Force Microscope. Langmuir. 2018 Dec 23. doi: 10.1021/acs.langmuir.8b03597. [Epub ahead of print]
PubMed ID: 30580525
Matsufuji T, Kinoshita M, Matsumori N. Preparation and Membrane Distribution of Fluorescent Derivatives of Ceramide. Langmuir. 2019 Feb 12;35(6):2392-2398. doi: 10.1021/acs.langmuir.8b03176. Epub 2019 Jan 22.
PubMed ID: 30608698
Lanfranco R, Jana PK, Tunesi L, Cicuta P, Mognetti BM, Di Michele L, Bruylants G. Kinetics of Nanoparticle-Membrane Adhesion Mediated by Multivalent Interactions. Langmuir. 2019 Feb 12;35(6):2002-2012. doi: 10.1021/acs.langmuir.8b02707. Epub 2019 Jan 29.
PubMed ID: 30636419
Perrotton J, Ahijado-Guzmán R, Moleiro LH , Tinao B, Guerrero-Martinez A, Amstad E, Monroy F, Arriaga LR. Microfluidic fabrication of vesicles with hybrid lipid/nanoparticle bilayer membranes. Soft Matter. 2019 Feb 6;15(6):1388-1395. doi: 10.1039/c8sm02050g.
PubMed ID: 30627710
Joanna Juhaniewicz-Dębińska, Dagmara Tymecka, Sławomir Sęka. Diverse effect of cationic lipopeptide on negatively charged and neutral lipid bilayers supported on gold electrodes. Electrochimica Acta. 2019 March 1; 298:735-744. doi: 10.1016/j.electacta.2018.12.139
Yandrapalli N, Robinson T. Ultra-high capacity microfluidic trapping of giant vesicles for high-throughput membrane studies. Lab Chip. 2019 Feb 12;19(4):626-633. doi: 10.1039/c8lc01275j.
PubMed ID: 30632596
Lu X, Xiao H, Li S, Pang X, Song J, Liu S, Cheng H, Li Y, Wang X, Huang C, Guo T, Ter Meulen J, Daffis S, Yan J, Dai L, Rao Z, Klenk HD, Qi J, Shi Y, Gao GF. Double Lock of a Human Neutralizing and Protective Monoclonal Antibody Targeting the Yellow Fever Virus Envelope. Cell Rep. 2019 Jan 8;26(2):438-446.e5. doi: 10.1016/j.celrep.2018.12.065.
PubMed ID: 30625326
Wang S, Li Y, Gong J, Ye S, Yang X, Zhang R, Ma C. Munc18 and Munc13 serve as a functional template to orchestrate neuronal SNARE complex assembly. Nat Commun. 2019 Jan 8;10(1):69. doi: 10.1038/s41467-018-08028-6.
PubMed ID: 30622273
ALMEIDA, Mainara Trindade de. Synthesis of nanobiostructures containing the antimicrobial peptide dermadistinctin K for biotechnological applications. 2018. 82 p. Dissertation (Master degree) - Graduate Program in Chemistry, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, 2018.
MARINHO, Luiz Eduardo Silva. Biophysical studies of the mechanism of action of glicotriazol-peptides. 2018. 87 p. Dissertation (Master degree) - Graduate Program in Chemistry, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, 2018.
Mandal T, Hustedt EJ, Song L, Oh KJ. CW EPR and DEER Methods to Determine BCL-2 Family Protein Structure and Interactions: Application of Site-Directed Spin Labeling to BAK Apoptotic Pores. Methods Mol Biol. 2019;1877:257-303. doi: 10.1007/978-1-4939-8861-7_18.
PubMed ID: 30536012
Nitsche J, Josts I, Heidemann J, Mertens HD, Maric S, Moulin M, Haertlein M, Busch S, Forsyth VT5, Svergun DI, Uetrecht C, Tidow H. Structural basis for activation of plasma-membrane Ca2+-ATPase by calmodulin. Commun Biol. 2018 Nov 26;1:206. doi: 10.1038/s42003-018-0203-7. eCollection 2018.
PubMed ID: 30511020
Mildner J, Wnętrzak A, Dynarowicz-Latka P. Cholesterol and Cardiolipin Importance in Local Anesthetics-Membrane Interactions: The Langmuir Monolayer Study. J Membr Biol. 2019 Feb;252(1):31-39. doi: 10.1007/s00232-018-0055-6. Epub 2018 Nov 30.
PubMed ID: 30506104
Hallock MJ, Greenwood AI, Wang Y, Morrissey JH, Tajkhorshid E, Rienstra CM, Pogorelov TV. Calcium-Induced Lipid Nanocluster Structures: Sculpturing of the Plasma Membrane. Biochemistry. 2018 Dec 18;57(50):6897-6905. doi: 10.1021/acs.biochem.8b01069. Epub 2018 Dec 4.
PubMed ID: 30456950
Afanasyeva EF, Syryamina VN, De Zotti M, Formaggio F, Toniolo C, Dzuba SA. Peptide antibiotic trichogin in model membranes: Self-association and capture of fatty acids. Biochim Biophys Acta Biomembr. 2019 Feb 1;1861(2):524-531. doi: 10.1016/j.bbamem.2018.12.006. Epub 2018 Dec 12.
PubMed ID: 30550880
Irazazabal L, Porto WF, Fensterseifer ICM, Alves ESF, Matos CO, Menezes ACS, Felício MR, Gonçalves S, Santos NC, Ribeiro SM, Humblot V, Lião LM, Ladram A, Franco OL. Fast and potent bactericidal membrane lytic activity of PaDBS1R1, a novel cationic antimicrobial peptide. Biochim Biophys Acta Biomembr. 2019 Jan;1861(1):178-190. doi: 10.1016/j.bbamem.2018.08.001. Epub 2018 Aug 10.
PubMed ID: 30463701
Khalil-Mgharbel A, Polena H, Dembélé PK, Hasan Sohag MM, Alcaraz JP, Martin DK, Vilgrain I. A Biomimetic Lipid Membrane Device Reveals the Interaction of Cancer Biomarkers with Human Serum Lipidic Moieties. Biotechnol J. 2018 Dec;13(12):e1800463. doi: 10.1002/biot.201800463.
PubMed ID: 30457706
Mouts A, Vattulainen E, Matsufuji T, Kinoshita M, Matsumori N, Slotte JP. On the importance of the C(1)-OH and C(3)-OH functional groups of the long-chain base of ceramide for interlipid interaction and lateral segregation into ceramide-rich domains. Langmuir. 2018 Dec 3. doi: 10.1021/acs.langmuir.8b03237. [Epub ahead of print].
PubMed ID: 30507134
Worstell NC, Singla A, Wu HJ. Evaluation of hetero-multivalent lectin binding using a turbidity-based emulsion agglutination assay. Colloids Surf B Biointerfaces. 2019 Mar 1;175:84-90. doi: 10.1016/j.colsurfb.2018.11.069. Epub 2018 Nov 28.
PubMed ID: 30522011
Botet-Carreras A, Montero MT, Domènech Ò, Borrell JH. Effect of cholesterol on monolayer structure of different acyl chained phospholipids. Colloids Surf B Biointerfaces. 2019 Feb 1;174:374-383. doi: 10.1016/j.colsurfb.2018.11.040. Epub 2018 Nov 19.
PubMed ID: 30476791
Parra-Ortiz E, Browning KL, Damgaard LSE, Nordström R, Micciulla S, Bucciarelli S, Malmsten M. Effects of oxidation on the physicochemical properties of polyunsaturated lipid membranes. J Colloid Interface Sci. 2019 Mar 7;538:404-419. doi: 10.1016/j.jcis.2018.12.007. Epub 2018 Dec 3.
PubMed ID: 30530078
Cao P, Bai H, Wang X, Che J. Role of the Ebola membrane in the protection conferred by the three-mAb cocktail MIL77. Sci Rep. 2018 Dec 4;8(1):17628. doi: 10.1038/s41598-018-35964-6.
PubMed ID: 30514891
Lawrence N, Wu B, Ligutti J, Cheneval O, Agwa AJ, Benfield AH, Biswas K, Craik DJ, Miranda LP, Troeira Henriques S, Schroeder CI. Peptide-membrane interactions affect the inhibitory potency and selectivity of spider toxins ProTx-II and GpTx-1. ACS Chem Biol. 2018 Dec 3. doi: 10.1021/acschembio.8b00989. [Epub ahead of print].
PubMed ID: 30507158
Liu X, Bu J, Zhou X, Ouyang Z. Tandem Analysis by a Dual-Trap Miniature Mass Spectrometer. Anal Chem. 2018 Nov 28. doi: 10.1021/acs.analchem.8b03958. [Epub ahead of print].
PubMed ID: 30444599
Li Y, Soubias O, Li J, Sun S, Randazzo PA, Byrd RA. Functional Expression and Characterization of Human Myristoylated-Arf1 in Nanodisc Membrane Mimetics. Biochemistry. 2019 Feb 20. doi: 10.1021/acs.biochem.8b01323. [Epub ahead of print]
PubMed ID: 30735034
Lin CC, Bachmann M, Bachler S, Venkatesan K, Dittrich PS. Tunable Membrane Potential Reconstituted in Giant Vesicles Promotes Permeation of Cationic Peptides at Nanomolar Concentrations. ACS Appl Mater Interfaces. 2018 Nov 19. doi: 10.1021/acsami.8b12217. [Epub ahead of print].
PubMed ID: 30450894
Thomas LL, van der Vegt SA, Fromme JC. A Steric Gating Mechanism Dictates the Substrate Specificity of a Rab-GEF. Dev Cell. 2019 Jan 7;48(1):100-114.e9. doi: 10.1016/j.devcel.2018.11.013. Epub 2018 Dec 6.
PubMed ID: 30528786
Iwamoto M, Oiki S. Constitutive boost of a K+ channel via inherent bilayer tension and a unique tension-dependent modality. Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):13117-13122. doi: 10.1073/pnas.1812282115. Epub 2018 Dec 3.
PubMed ID: 30509986
Kourtzelis I, Li X, Mitroulis I, Grosser D, Kajikawa T, Wang B, Grzybek M, von Renesse J, Czogalla A, Troullinaki M, Ferreira A, Doreth C, Ruppova K, Chen LS, Hosur K, Lim JH, Chung KJ, Grossklaus S, Tausche AK, Joosten LAB, Moutsopoulos NM, Wielockx B, Castrillo A, Korostoff JM, Coskun Ü, Hajishengallis G, Chavakis T. DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat Immunol. 2019 Jan;20(1):40-49. doi: 10.1038/s41590-018-0249-1. Epub 2018 Nov 19.
PubMed ID: 30455459
Cauz ACG, Carretero GPB, Saraiva GKV, Park P, Mortara L, Cuccovia IM, Brocchi M, Gueiros-Filho FJ. Violacein Targets the Cytoplasmic Membrane of Bacteria. ACS Infect Dis. 2019 Feb 12. doi: 10.1021/acsinfecdis.8b00245. [Epub ahead of print]
PubMed ID: 30693760
Nyholm TKM, Jaikishan S, Engberg O, Hautala V, Slotte JP. The Affinity of Sterols for Different Phospholipid Classes and Its Impact on Lateral Segregation. Biophys J. 2019 Jan 22;116(2):296-307. doi: 10.1016/j.bpj.2018.11.3135. Epub 2018 Dec 6.
PubMed ID: 30583790
Matsufuji T, Kinoshita M, Matsumori N. Preparation and Membrane Distribution of Fluorescent Derivatives of Ceramide. Langmuir. 2019 Jan 4. doi: 10.1021/acs.langmuir.8b03176. [Epub ahead of print]
PubMed ID: 30608698
Henneberger L, Mühlenbrink M, Fischer FC, Escher BI. C18-coated solid phase microextraction fibers for the quantification of partitioning of organic acids to proteins, lipids and cells. Chem Res Toxicol. 2018 Dec 26. doi: 10.1021/acs.chemrestox.8b00249. [Epub ahead of print]
PubMed ID: 30585484
Lira RB, Robinson T, Dimova R, Riske KA. Highly Efficient Protein-free Membrane Fusion: A Giant Vesicle Study. Biophys J. 2019 Jan 8;116(1):79-91. doi: 10.1016/j.bpj.2018.11.3128. Epub 2018 Dec 1.
PubMed ID: 30579564
Mudassar Mumtaz Virk, Benedikt Hofmann, and Erik Reimhult. Formation and Characteristics of Lipid-Blended Block Copolymer Bilayers on a Solid Support Investigated by Quartz Crystal Microbalance and Atomic Force Microscopy. Langmuir, Articles ASAP (As Soon As Publishable)
Matsufuji T, Kinoshita M, Matsumori N. Preparation and Membrane Distribution of Fluorescent Derivatives of Ceramide. Langmuir. 2019 Jan 4. doi: 10.1021/acs.langmuir.8b03176. [Epub ahead of print]
PubMed ID: 30608698
Virk MM, Hofmann B, Reimhult E. Formation and Characteristics of Lipid Blended Block Copolymer Bilayers on Solid Support Investigated by Quartz Crystal Microbalance and Atomic Force Microscope. Langmuir. 2018 Dec 23. doi: 10.1021/acs.langmuir.8b03597. [Epub ahead of print]
PubMed ID: 30580525
Kurniawan J, Ventrici de Souza JF, Dang AT, Liu GY, Kuhl TL. Preparation and Characterization of Solid Supported Lipid Bilayers Formed by Langmuir-Blodgett Deposition - a Tutorial. Langmuir. 2018 Nov 22. doi: 10.1021/acs.langmuir.8b03504. [Epub ahead of print]
PubMed ID: 30465730
Brander S, Jank T, Hugel T. AFM Imaging Suggests Receptor Free Penetration of Lipid Bilayers by Toxins. Langmuir. 2018 Dec 19. doi: 10.1021/acs.langmuir.8b03146. [Epub ahead of print]
PubMed ID: 30565941
Mouts A, Vattulainen E, Matsufuji T, Kinoshita M, Matsumori N, Slotte JP. On the importance of the C(1)-OH and C(3)-OH functional groups of the long-chain base of ceramide for interlipid interaction and lateral segregation into ceramide-rich domains.Langmuir 2018, 34, 51, 15864-15870.
PubMed ID: 30507134
Hallock MJ, Greenwood AI, Wang Y, Morrissey JH, Tajkhorshid E, Rienstra CM, Pogorelov TV. Calcium-induced lipid nanocluster structures: sculpturing of the plasma membrane. Biochemistry. 2018 Nov 20. doi: 10.1021/acs.biochem.8b01069. [Epub ahead of print]
PubMed ID: 30456950
Pace HP, Hannestad JK, Armonious A, Adamo M, Agnarsson B, Gunnarsson A, Micciulla S, Sjövall P, Gerelli Y, Höök F. Structure and Composition of Native Membrane Derived Polymer-Supported Lipid Bilayers. Anal Chem. 2018 Oct 26. doi: 10.1021/acs.analchem.8b04110. [Epub ahead of print]
PubMed ID: 30350611
Buchegger B, Kreutzer J, Axmann M, Mayr S, Wollhofen R, Plochberger B, Jacak J, Klar TA. Proteins on Supported Lipid Bilayers Diffusing around Proteins Fixed on Acrylate Anchors. Anal Chem. 2018 Oct 25. doi: 10.1021/acs.analchem.8b02588. [Epub ahead of print]
PubMed ID: 30350628
Yano Y, Hanashima S, Yasuda T, Tsuchikawa H, Matsumori N, Kinoshita M, Al Sazzad MA, Slotte JP, Murata M. Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation. Biophys J. 2018 Oct 16;115(8):1530-1540. doi: 10.1016/j.bpj.2018.08.042. Epub 2018 Sep 7.
PubMed ID: 30274830
Skar-Gislinge N, Johansen NT, Høiberg-Nielsen R, Arleth L. Comprehensive Study of the Self-Assembly of Phospholipid Nanodiscs: What Determines Their Shape and Stoichiometry? Langmuir. 2018 Oct 10. doi: 10.1021/acs.langmuir.8b01503. [Epub ahead of print]
PubMed ID: 30239200
Skar-Gislinge N, Johansen NT, Høiberg-Nielsen R, Arleth L. A comprehensive study of the self-assembly of phospholipid nanodiscs: What determines their shape and stoichiometry? Langmuir. 2018 Sep 21. doi: 10.1021/acs.langmuir.8b01503. [Epub ahead of print]
PubMed ID: 30239200
Becher S, Esch P, Heiles S. Relative Quantification of Phosphatidylcholine sn-Isomers Using Positive Doubly Charged Lipid-Metal Ion Complexes. Anal Chem. 2018 Sep 21. doi: 10.1021/acs.analchem.8b02731. [Epub ahead of print]
PubMed ID: 30199242
Bao H, Goldschen-Ohm M, Jeggle P, Chanda B, Edwardson JM, Chapman ER. Exocytotic fusion pores are composed of both lipids and proteins. Nat Struct Mol Biol. 2016 Jan;23(1):67-73. doi: 10.1038/nsmb.3141. Epub 2015 Dec 14.
PubMed ID: 26656855
Bao H, Goldschen-Ohm M, Jeggle P, Chanda B, Edwardson JM, Chapman ER. Exocytotic fusion pores are composed of both lipids and proteins. Nat Struct Mol Biol. 2016 Jan;23(1):67-73. doi: 10.1038/nsmb.3141. Epub 2015 Dec 14.
PubMed ID: 26656855
Bao H, Das D, Courtney NA, Jiang Y, Briguglio JS, Lou X, Roston D, Cui Q, Chanda B, Chapman ER. Dynamics and number of trans-SNARE complexes determine nascent fusion pore properties. Nature. 2018 Feb 8;554(7691):260-263. doi: 10.1038/nature25481. Epub 2018 Jan 31.
PubMed ID: 29420480
Harmouche N, Bechinger B. Lipid-Mediated Interactions between the Antimicrobial Peptides Magainin 2 and PGLa in Bilayers. Biophys J. 2018 Aug 16. pii: S0006-3495(18)30936-6. doi: 10.1016/j.bpj.2018.08.009. [Epub ahead of print]
PubMed ID: 30195937
Bryce DA, Kitt JP, Harris JM. Confocal Raman Microscopy for Label-Free Detection of Protein-Ligand Binding at Nanopore-Supported Phospholipid Bilayers. Anal Chem. 2018 Sep 13. doi: 10.1021/acs.analchem.8b02791. [Epub ahead of print]
PubMed ID: 30175578
Ceccon A, Clore GM, Tugarinov V. Decorrelating Kinetic and Relaxation Parameters in Exchange Saturation Transfer NMR: A Case Study of N-Terminal Huntingtin Peptides Binding to Unilamellar Lipid Vesicles. J Phys Chem B. 2018 Sep 12. doi: 10.1021/acs.jpcb.8b07112. [Epub ahead of print]
PubMed ID: 30156416
Kimble-Hill AC, Petrache HI, Seifert S, Firestone MA. Reorganization of Ternary Lipid Mixtures of Nonphosphorylated Phosphatidylinositol Interacting with Angiomotin. J Phys Chem B. 2018 Aug 27. doi: 10.1021/acs.jpcb.7b12641. [Epub ahead of print]
PubMed ID: 29877706
Cao W, Ma X, Li Z, Zhou X, Ouyang Z. Locating Carbon-Carbon Double Bonds in Unsaturated Phospholipids by Epoxidation Reaction and Tandem Mass Spectrometry. Anal Chem. 2018 Aug 23. doi: 10.1021/acs.analchem.8b02021. [Epub ahead of print]
PubMed ID: 30095894
Kawai C, Ferreira JC, Baptista MS, Nantes IL. Not only oxidation of cardiolipin affects the affinity of cytochrome C for lipid bilayers. J Phys Chem B. 2014 Oct 16;118(41):11863-72. doi: 10.1021/jp504518g. Epub 2014 Oct 6.
PubMed ID: 25247479
Rupert DLM, Mapar M, Shelke GV, Norling K, Elmeskog M, Lötvall JO, Block S, Bally M, Agnarsson B, Höök F. Effective Refractive Index and Lipid Content of Extracellular Vesicles Revealed Using Optical Waveguide Scattering and Fluorescence Microscopy. Langmuir. 2018 Jul 24;34(29):8522-8531. doi: 10.1021/acs.langmuir.7b04214. Epub 2018 Jul 11.
PubMed ID: 29923735
Meker S, Chin H, Sut TN, Cho NJ. Amyloid-β Peptide Triggers Membrane Remodeling in Supported Lipid Bilayers Depending on Their Hydrophobic Thickness. Langmuir. 2018 Jul 18. doi: 10.1021/acs.langmuir.8b01196. [Epub ahead of print]
PubMed ID: 30021071
Movsesian N, Tittensor M, Dianat G, Gupta M, Malmstadt N. Giant Lipid Vesicle Formation Using Vapor-Deposited Charged Porous Polymers. Langmuir. 2018 Jul 17. doi: 10.1021/acs.langmuir.8b00736. [Epub ahead of print]
PubMed ID: 29961336
Walsh SM, Mathiasen S, Christensen SM, Fay JF, King C, Provasi D, Borrero E, Rasmussen SGF, Fung JJ, Filizola M, Hristova K, Kobilka B, Farrens DL, Stamou D. Single Proteoliposome High-Content Analysis Reveals Differences in the Homo-Oligomerization of GPCRs. Biophys J. 2018 Jul 17;115(2):300-312. doi: 10.1016/j.bpj.2018.05.036.
PubMed ID: 30021106
Pittman AE, Marsh BP, King GM. Conformations and Dynamic Transitions of a Melittin Derivative That Forms Macromolecule-Sized Pores in Lipid Bilayers. Langmuir. 2018 Jul 9. doi: 10.1021/acs.langmuir.8b00804. [Epub ahead of print]
PubMed ID: 29933696
Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems. ACS Nano. 2018 Jul 10. doi: 10.1021/acsnano.8b02053. [Epub ahead of print]
PubMed ID: 29975503
Movsesian N, Tittensor M, Dianat G, Gupta M, Malmstadt N. Giant Lipid Vesicle Formation Using Vapor-Deposited Charged Porous Polymers. Langmuir. 2018 Jul 2. doi: 10.1021/acs.langmuir.8b00736. [Epub ahead of print]
PubMed ID: 29961336
Parkkila P, Elderdfi M, Bunker A, Viitala T. Biophysical Characterization of Supported Lipid Bilayers Using Parallel Dual-Wavelength Surface Plasmon Resonance and Quartz Crystal Microbalance Measurements. Langmuir. 2018 Jun 25. doi: 10.1021/acs.langmuir.8b01259. [Epub ahead of print]
PubMed ID: 29894192
Taylor GJ, Heberle FA, Seinfeld JS, Katsaras J, Collier CP , Sarles SA. Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes. Langmuir. 2017 Sep 26;33(38):10016-10026. doi: 10.1021/acs.langmuir.7b02022. Epub 2017 Sep 5.
PubMed ID: 28810118
Parkkila P, Elderdfi M, Bunker A, Viitala T. Biophysical Characterization of Supported Lipid Bilayers Using Parallel Dual-Wavelength Surface Plasmon Resonance and Quartz Crystal Microbalance Measurements. Langmuir. 2018 Jun 25. doi: 10.1021/acs.langmuir.8b01259. [Epub ahead of print]
PubMed ID: 29894192
Pittman AE, Marsh BP, King GM. Conformations and dynamic transitions of a melittin derivative that forms macromolecule-sized pores in lipid bilayers.
Langmuir. 2018 Jun 22. doi: 10.1021/acs.langmuir.8b00804. [Epub ahead of print]
PubMed ID: 29933696
Ausili A, Martinez Valera P, Torrecillas A, Gómez-Murcia V, deGodos AM, Corbalan-Garcia S, Teruel JA, Gomez-Fernandez JC. The anticancer agent edelfosine exhibits a high affinity for cholesterol and disorganizes liquid ordered membrane structures. Langmuir. 2018 Jun 20. doi: 10.1021/acs.langmuir.8b01539. [Epub ahead of print]
PubMed ID: 29924618
Kot EF, Arseniev AS, Mineev KS. On the behavior of most widely spread lipids in isotropic bicelles. Langmuir. 2018 Jun 20. doi: 10.1021/acs.langmuir.8b01454. [Epub ahead of print]
PubMed ID: 29924628
Kumar S, Scheidt HA, Kaur N, Kaur A, Kang TS, Huster D, Mithu VS. Amphiphilic Ionic Liquid-Induced Membrane Permeabilization: Binding Is Not Enough. J Phys Chem B. 2018 Jun 20. doi: 10.1021/acs.jpcb.8b03733. [Epub ahead of print]
PubMed ID: 29878782
Parkkila P, Elderdfi M, Bunker A, Viitala T. Biophysical characterization of supported lipid bilayers using parallel dual-wavelength surface plasmon resonance and quartz crystal microbalance measurements. Langmuir. 2018 Jun 12. doi: 10.1021/acs.langmuir.8b01259. [Epub ahead of print]
PubMed ID: 29894192
Bhatia T, Agudo-Canalejo J, Dimova R, Lipowsky R. Membrane Nanotubes Increase the Robustness of Giant Vesicles. ACS Nano. 2018 Apr 16. doi: 10.1021/acsnano.8b00640.
PubMed ID: 29659246
Kulkarni JA, Darjuan MM, Mercer JE, Chen S, van der Meel R, Thewalt JL, Tam YYC, Cullis PR. Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA. ACS Nano. 2018 Apr 6. doi: 10.1021/acsnano.8b01516.
PubMed ID: 29614232
Blaschke BM, Böhm P, Drieschner S, Nickel B, Garrido JA. Lipid monolayer formation and lipid exchange monitored by a graphene field-effect transistor. Langmuir. 2018 Mar 15. doi: 10.1021/acs.langmuir.8b00162.
PubMed ID: 29542929
Gironi B, Paolantoni M, Morresi A, Foggi P1, Sassi P. Influence of Dimethyl Sulfoxide on the Low-Temperature Behavior of Cholesterol-Loaded Palmitoyl-oleyl-phosphatidylcholine Membranes. J Phys Chem B. 2018 Jun 7. doi: 10.1021/acs.jpcb.8b02333. [Epub ahead of print]
PubMed ID: 29847732
Zong W, Thingholm B, Itel F, Schattling PS, Brodszkij E, Mayer D, Stenger S, Goldie KN, Han X, Städler B. Phospholipid-Block Copolymer Hybrid Vesicles with Lysosomal Escape Ability. Langmuir. 2018 Jun 1. doi: 10.1021/acs.langmuir.8b01073. [Epub ahead of print]
PubMed ID: 29776311
Skyttner C, Enander K, Aronsson C, Aili D. Tuning Liposome Membrane Permeability by Competitive Coiled Coil Heterodimerization and Heterodimer Exchange. Langmuir. 2018 May 22. doi: 10.1021/acs.langmuir.8b00592. [Epub ahead of print]
PubMed ID: 29758162
James Kurniawan, João Ventrici, Gregory Kittleson and Tonya L. Kuhl Interaction Forces between Lipid Rafts. Langmuir. Publication Date (Web): December 21, 2016 DOI: 10.1021/acs.langmuir.6b03717
PubMed ID: 28001077
What Is the Preferred Conformation of Phosphatidylserine–Copper(II) Complexes? A Combined Theoretical and Experimental Investigation Kari Kusler, Samuel O. Odoh, Alexey Silakov, Matthew F. Poyton, Saranya Pullanchery, Paul S. Cremer and Laura Gagliardi J. Phys. Chem. B, Article ASAP DOI: 10.1021/acs.jpcb.6b10675
PubMed ID: 27957849
Nuria Roldan,Thomas K.M. Nyholm,J. Peter Slotte,Jesús Pérez-Gil,Begoña García-Álvarez. (2016). Effect of Lung Surfactant Protein SP-C and SP-C-Promoted Membrane Fragmentation on Cholesterol Dynamics. Biophysical Journal 111(8):1703-1713.
PubMed ID: 27760357
Victor, K.G., J.P. Korb, and R.G. Bryant. (2013). Translational Dynamics of Water at the Phospholipid Interface. J Phys Chem B Sep 23, 2013
PubMed ID: 24059874
Acyl Chain Length and Saturation Modulate Interleaflet Coupling in Asymmetric Bilayers: Effects on Dynamics and Structural Order. Salvatore Chiantia and Erwin London, Biophysical Journal, Volume 103, Issue 11, 2311-2319, 5 December 2012.
PubMed ID: 23283230
Jerabek, H., G. Pabst, M. Rappolt, and T. Stockner. (2010). Membrane-mediated effect on ion channels induced by the anesthetic drug ketamine. J Am Chem Soc 132:7990-7.
PubMed ID: 20527936
Mark J. Richards and Susan Daniel, Two-Phase Contiguous Supported Lipid Bilayer Model for Membrane Rafts via Polymer Blotting and Stenciling, Langmuir, Article ASAP DOI: 10.1021/acs.langmuir.6b04385
PubMed ID: 28092950
Shin, Y.K. and W.L. Hubbell. (1992). Determination of electrostatic potentials at biological interfaces using electron-electron double resonance. Biophys J 61:1443-53.
PubMed ID: 1319760
James Kruczek, See-Wing Chiu, Eric Jakobsson and Sagar A. Pandit, Effects of Lithium and Other Monovalent Ions on Palmitoyl Oleoyl Phosphatidylcholine Bilayer, Langmuir, Article ASAP DOI: 10.1021/acs.langmuir.6b04166
PubMed ID: 28076953
Nanoroughness Strongly Impacts Lipid Mobility in Supported Membranes Florence Blachon†, Frédéric Harb‡, Bogdan Munteanu§, Agnès Piednoir†, Rémy Fulcrand†, Thierry Charitat∥, Giovanna Fragneto⊥, Olivier Pierre-Louis†, Bernard Tinland#, and Jean-Paul Rieu*† Langmuir, Article ASAP
PubMed ID: 28219008
Charles G. Cranfield, Sónia Troeira Henriques, Boris Martinac, Paul Duckworth, David J. Craik and Bruce Cornell. Kalata B1 and Kalata B2 Have a Surfactant-Like Activity in Phosphatidylethanolomine-Containing Lipid Membranes. Langmuir, Article ASAP
PubMed ID: 28605904
Ling Han, Luis C. Morales, Michele R. Richards, Elena N. Kitova, Simonetta Sipione and John S. Klassen. Investigating the Influence of Membrane Composition on Protein–Glycolipid Binding Using Nanodiscs and Proxy Ligand Electrospray Ionization Mass Spectrometry. Anal. Chem., Article ASAP
PubMed ID: 28768095
Yixing Chen, Halil I. Okur, Cornelis Lütgebaucks, and Sylvie Roke. Zwitterionic and charged lipids form remarkably different structures on nanoscale oil droplets in aqueous solution. Langmuir, Just Accepted Manuscript.
PubMed ID: 29019694
Saba Ghazvini, Ryan Alonso, Nabil Alhakamy, and Prajnaparamita Dhar. pH induced changes in the surface viscosity of unsaturated phospholipids monitored using active interfacial microrheology. Langmuir, Just Accepted Manuscript
PubMed ID: 29019691
Maria J. Sarmento, Ana Coutinho, Aleksander Fedorov, Manuel Prieto, and Fabio Fernandes. Membrane Order Is a Key Regulator of Divalent Cation-Induced Clustering of PI(3,5)P2 and PI(4,5)P2. Langmuir. Article ASAP.
PubMed ID: 28961003
Masato Abe, Yoshiki Sawada, Shinpei Uno, Shuhei Chigasaki, Masahide Oku, Yasuyoshi Sakai, and Hideto Miyoshi. Role of Acyl Chain Composition of Phosphatidylcholine in Tafazzin-Mediated Remodeling of Cardiolipin in Liposomes. Biochemistry, Article ASAP
PubMed ID: 29091407
Sunami T, Shimada K, Tsuji G, Fujii S Flow Cytometric Analysis To Evaluate Morphological Changes in Giant Liposomes As Observed in Electrofusion Experiments. Langmuir. 2017 Dec 19. doi: 10.1021/acs.langmuir.7b03317.
PubMed ID: 29215888
Matsufuji T, Kinoshita M, Möuts A, Slotte JP, Matsumori N Preparation and Membrane Properties of Oxidized Ceramide Derivatives. Langmuir. 2017 Dec 27. doi: 10.1021/acs.langmuir.7b02654.
PubMed ID: 29231736
Mumtaz Virk M, Reimhult E. Phospholipase A2-Induced Degradation and Release from Lipid-Containing Polymersomes. Langmuir. 2017 Dec 27. doi: 10.1021/acs.langmuir.7b03893.
PubMed ID: 29231739
Enrico Forbrig, Jana K. Staffa, Johannes Salewski, Maria Andrea Mroginski, Peter Hildebrandt, and Jacek Kozuch. Monitoring the Orientational Changes of Alamethicin Incorporating into Bilayer Lipid Membranes. Langmuir, Just Accepted Manuscript DOI: 10.1021/acs.langmuir.7b04265
PubMed ID: 29353482
Enoki TA, Moreira-Silva I, Lorenzon EN, Cilli EM, Perez KR, Riske KA, Lamy MT. Antimicrobial Peptide K0-W6-Hya1 Induces Stable Structurally Modified Lipid Domains in Anionic Membranes. Langmuir. 2018 Jan 22. doi: 10.1021/acs.langmuir.7b03408. [Epub ahead of print]
PubMed ID: 29284086
Forbrig E, Staffa JK, Salewski J, Mroginski MA, Hildebrandt P, Kozuch J. Monitoring the Orientational Changes of Alamethicin during Incorporation into Bilayer Lipid Membranes. Langmuir. 2018 Feb 1. doi: 10.1021/acs.langmuir.7b04265. [Epub ahead of print]
PubMed ID: 29353482
Markones M, Drechsler C, Kaiser M, Kalie L, Heerklotz H, Fiedler S. Engineering Asymmetric Lipid Vesicles: Accurate and Convenient Control of the Outer Leaflet Lipid Composition. Langmuir. 2018 Jan 29. doi: 10.1021/acs.langmuir.7b03189. [Epub ahead of print]
PubMed ID: 29294294
Okano T, Inoue K, Koseki K, Suzuki H. Deformation Modes of Giant Unilamellar Vesicles Encapsulating Biopolymers. ACS Synth Biol. 2018 Feb 5. doi: 10.1021/acssynbio.7b00460. [Epub ahead of print]
PubMed ID: 29382193
Li G, Kim J, Huang Z, St Clair JR, Brown DA, London E. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14025-14030. Epub 2016 Nov 21.
PubMed ID: 27872310
Bockelmann S, Mina JGM, Korneev S, Hassan DG, Mueller D, Hilderink A, Vlieg HC, Raijmakers R, Heck AJR, Haberkant P, Holthuis JCM. A search for ceramide binding proteins using bifunctional lipid analogs yields CERT-related protein StarD7. J Lipid Res. 2018 Jan 17. pii: jlr.M082354. doi: 10.1194/jlr.M082354.
PubMed ID: 29343537
Ausili A, Torrecillas A, deGodos AM, Corbalan-Garcia S, Gomez-Fernandez JC. The phenolic group of α-tocopherol anchors in the lipid-water interface of fully saturated membranes. Langmuir. 2018 Feb 15. doi: 10.1021/acs.langmuir.7b04142. [Epub ahead of print]
PubMed ID: 29447442
Kot EF, Goncharuk SA, Arseniev AS, Mineev KS. Phase Transitions in Small Isotropic Bicelles. Langmuir. 2018 Mar 6. doi: 10.1021/acs.langmuir.7b03610.
PubMed ID: 29486112
Peñalva DA, Antollini S, Ambroggio E, Aveldaño MI, Fanani ML. MEMBRANE RESTRUCTURING EVENTS DURING THE ENZYMATIC GENERATION OF CERAMIDES WITH VERY LONG-CHAIN POLYUNSATURATED FATTY ACIDS. Langmuir. 2018 Mar 15. doi: 10.1021/acs.langmuir.7b04374. [Epub ahead of print]
PubMed ID: 29540057
Certificates of Analysis
Certificate of Analysis
(Lot No. 850457C-25MG-A-207
and 5679CJA207)
Certificate of Analysis
(Lot No. 850457P-25MG-A-207
and 5679PJA207)
Certificate of Analysis
(Lot No. 850457C-1G-A-208
and 5679CQA208)
Certificate of Analysis
(Lot No. 850457C-200MG-A-208
and 5679CNA208)
Certificate of Analysis
(Lot No. 850457C-500MG-A-208
and 5679CPA208)
Certificate of Analysis
(Lot No. 850457P-1G-A-208
and 5679PQA208)
Certificate of Analysis
(Lot No. 850457P-200MG-A-208
and 5679PNA208)
Certificate of Analysis
(Lot No. 850457P-500MG-A-208
and 5679PPA208)
Certificate of Analysis
(Lot No. 850457C-1G-A-209
and 5679CQA209)
Certificate of Analysis
(Lot No. 850457C-200MG-A-209
and 5679CNA209)
Certificate of Analysis
(Lot No. 850457C-25MG-A-209
and 5679CJA209)
Certificate of Analysis
(Lot No. 850457C-500MG-A-209
and 5679CPA209)
Certificate of Analysis
(Lot No. 850457P-1G-A-209
and 5679PQA209)
Certificate of Analysis
(Lot No. 850457P-200MG-A-209
and 5679PNA209)
Certificate of Analysis
(Lot No. 850457P-25MG-A-209
and 5679PJA209)
Certificate of Analysis
(Lot No. 850457P-500MG-A-209
and 5679PPA209)
Certificate of Analysis
(Lot No. 850457P-CONF-A-209
and 5679PWA209)
Certificate of Analysis
(Lot No. 850457P-500MG-B-209
and 5679PPB209)
Certificate of Analysis
(Lot No. 850457P-25MG-B-209
and 5679PJB209)
Certificate of Analysis
(Lot No. 850457P-25MG-C-209
and 5679PJB209)
Certificate of Analysis
(Lot No. 850457C-200MG-B-209
and 5679CNB209)
Certificate of Analysis
(Lot No. 850457C-500MG-B-209
and 5679CPB209)
Certificate of Analysis
(Lot No. 850457C-1G-A-211
and 5679CQA211)
Certificate of Analysis
(Lot No. 850457C-200MG-A-211
and 5679CNA211)
Certificate of Analysis
(Lot No. 850457P-1G-A-211
and 5679PQA211)
Certificate of Analysis
(Lot No. 850457C-25MG-A-211
and 5679CJA211)
Certificate of Analysis
(Lot No. 850457P-500MG-A-211
and 5679PPA211)
Certificate of Analysis
(Lot No. 850457P-200MG-A-211
and 5679PNA211)
Certificate of Analysis
(Lot No. 850457P-200MG-B-211
and 5679PNB211)
Certificate of Analysis
(Lot No. 850457P-25MG-A-211
and 5679PJA211)
Certificate of Analysis
(Lot No. 850457P-1G-B-211
and 5679PQB211)
Certificate of Analysis
(Lot No. 850457C-500MG-A-211
and 5679CPA211)
Certificate of Analysis
(Lot No. 850457P-500MG-B-211
and 5679PPB211)
Certificate of Analysis
(Lot No. 850457P-25MG-B-211
and 5679PJB211)
Certificate of Analysis
(Lot No. 850457C-25MG-A-212
and 5679CJA212)
Certificate of Analysis
(Lot No. 850457C-200MG-A-212
and 5679CNA212)
Certificate of Analysis
(Lot No. 850457P-25MG-A-212
and 5679PJA212)
Certificate of Analysis
(Lot No. 850457C-25MG-B-212
and 5679CJB212)
Certificate of Analysis
(Lot No. 850457C-1G-A-212
and 5679CQA212)
Certificate of Analysis
(Lot No. 850457C-1G-B-211
and 5679CQB211)
Certificate of Analysis
(Lot No. 850457C-200MG-B-211
and 5679CNB211)
Certificate of Analysis
(Lot No. 850457P-25MG-B-212
and 5679PJB212)
Certificate of Analysis
(Lot No. 850457C-500MG-A-212
and 5679CPA212)
Certificate of Analysis
(Lot No. 850457C-1G-B-212
and 5679CQB212)
Certificate of Analysis
(Lot No. 850457C-200MG-B-212
and 5679CNB212)
Certificate of Analysis
(Lot No. 850457C-25MG-C-212
and 5679CJC212)
Certificate of Analysis
(Lot No. 850457C-1G-B-212
and 5679CQB212)
Certificate of Analysis
(Lot No. 850457P-200MG-A-212
and 5679PNA212)
Certificate of Analysis
(Lot No. 850457P-500MG-A-212
and 5679PPA212)
Certificate of Analysis
(Lot No. 850457C-CONF-A-212
and 5679CWA212)
Certificate of Analysis
(Lot No. 850457C-200MG-C-212
and 5679CNC212)
Certificate of Analysis
(Lot No. 850457C-25MG-D-212
and 5679CJD212)
Certificate of Analysis
(Lot No. 850457P-25MG-C-212
and 5679PJC212)
Certificate of Analysis
(Lot No. 850457C-500MG-C-212
and 5679CPC212)
Certificate of Analysis
(Lot No. 850457C-1G-C-212
and 5679CQC212)
Certificate of Analysis
(Lot No. 850457P-500MG-B-212
and 5679PPB212)
Certificate of Analysis
(Lot No. 850457C-500MG-D-212
and 5679CPD212)
Certificate of Analysis
(Lot No. 850457P-200MG-B-212
and 5679PNB212)
Certificate of Analysis
(Lot No. 850457P-200MG-C-211
and 5679PNC211)
Certificate of Analysis
(Lot No. 850457P-1G-A-212
and 5679PQA212)
Certificate of Analysis
(Lot No. 850457P-200MG-C-212
and 5679PNC212)
Certificate of Analysis
(Lot No. 850457C-25MG-E-212
and 5679CJE212)
Certificate of Analysis
(Lot No. 850457C-500MG-E-212
and 5679CPE212)
Certificate of Analysis
(Lot No. 850457P-500MG-C-212
and 5679PPC212)
Certificate of Analysis
(Lot No. 850457P-200MG-D-212
and 5679PND212)
Certificate of Analysis
(Lot No. 850457C-25MG-F-212
and 5679CJF212)
Certificate of Analysis
(Lot No. 850457P-200MG-E-212
and 5679PNE212)
Certificate of Analysis
(Lot No. 850457C-1G-D-212
and 5679CQD212)
Certificate of Analysis
(Lot No. 850457P-500MG-D-212
and 5679PPD212)
Certificate of Analysis
(Lot No. 850457P-1G-B-212
and 5679PQB212)
Certificate of Analysis
(Lot No. 850457P-1G-A-213
and 5679PQA213)
Certificate of Analysis
(Lot No. 850457C-200MG-A-213
and 5679CNA213)
Certificate of Analysis
(Lot No. 850457C-500MG-A-213
and 5679CPA213)
Certificate of Analysis
(Lot No. 850457P-500MG-A-213
and 5679PPA213)
Certificate of Analysis
(Lot No. 850457P-200MG-A-213
and 5679PNA213)
Certificate of Analysis
(Lot No. 850457P-1G-B-213
and 5679PQB213)
Certificate of Analysis
(Lot No. 850457C-25MG-A-213
and 5679CJA213)
Certificate of Analysis
(Lot No. 850457C-25MG-A-214
and 5679CJA214)
Certificate of Analysis
(Lot No. 850457P-25MG-A-214
and 5679PJA214)
Certificate of Analysis
(Lot No. 850457P-1G-A-214
and 5679PQA214)
Certificate of Analysis
(Lot No. 850457C-2200MG-A-214
and 5679CNA214)
Certificate of Analysis
(Lot No. 850457C-500MG-A-214
and 5679CPA214)
Certificate of Analysis
(Lot No. 850457C-200MG-B-214
and 5679CNB214)
Certificate of Analysis
(Lot No. 850457P-200MG-F-212_5679PNEF212
and 5679PNEF212)
Certificate of Analysis
(Lot No. 850457P-200MG-A-214
and 5679PNA214)
Certificate of Analysis
(Lot No. 850457P-25MG-B-214
and 5679PJB214)
Certificate of Analysis
(Lot No. 850457P-500MG-A-214
and 5679PPA214)
Certificate of Analysis
(Lot No. 850457C-25MG-B-214
and 5679CJB214)
Certificate of Analysis
(Lot No. 850457P-25MG-C-214
and 5679PJC214)
Certificate of Analysis
(Lot No. 850457P-500MG-B-214
and 5679PPB214)
Certificate of Analysis
(Lot No. 850457P-200MG-B-214
and 5679PNB214)
Certificate of Analysis
(Lot No. 850457P-1G-A-216
and 5679PQA216)
Certificate of Analysis
(Lot No. 850457C-200MG-C-214
and 5679CNC214)
Certificate of Analysis
(Lot No. 850457C-200MG-A-216
and 5679CNA216)
Certificate of Analysis
(Lot No. 850457C-25MG-C-214
and 5679CJC214)
Certificate of Analysis
(Lot No. 850457C-25MG-B-216
and 5679CJB216)
Certificate of Analysis
(Lot No. 850457P-25MG-B-216
and 5679PJB216)
Certificate of Analysis
(Lot No. 850457C-1G-C-216
and 5679CQC216)
Certificate of Analysis
(Lot No. 850457P-500MG-B-216
and 5679PPB216)
Certificate of Analysis
(Lot No. 850457P-200MG-C-216
and 5679PNC216)
Certificate of Analysis
(Lot No. 850457C-500MG-D-216
and 5679CPD216)
Certificate of Analysis
(Lot No. 850457C-200MG-E-216
and 5679CNE216)
Certificate of Analysis
(Lot No. 850457P-500MG-D-216
and 5679PPD216)
Certificate of Analysis
(Lot No. 850457P-200MG-E-216
and 5679PNE216)
Certificate of Analysis
(Lot No. 850457P-1G-E-216
and 5679PQE216)
Certificate of Analysis
(Lot No. 850457C-1G-D-216
and 5679CQD216)
Certificate of Analysis
(Lot No. 850457P-500MG-E-216
and 5679PPE216)
Certificate of Analysis
(Lot No. 850457P-25MG-D-216
and 5679PJD216)
Certificate of Analysis
(Lot No. 850457C-500MG-E-216
and 5679CPE216)
Certificate of Analysis
(Lot No. 850457C-25MG-E-216
and 5679CJE216)
Certificate of Analysis
(Lot No. 850457P-25MG-E-216
and 5679PJE216)
Certificate of Analysis
(Lot No. 850457C-25MG-F-216
and 5679CJF216)
Certificate of Analysis
(Lot No. 850457P-1G-F-216
and 5679PQF216)
Certificate of Analysis
(Lot No. 850457P-200MG-F-216
and 5679PNF216)
Certificate of Analysis
(Lot No. 850457P-500MG-F-216
and 5679PPF216)
Certificate of Analysis
(Lot No. 850457P-25MG-F-216
and 5679PJF216)
Certificate of Analysis
(Lot No. 850457P-200MG-G-216
and 5679PNG216)
Certificate of Analysis
(Lot No. 850457C-500MG-F-216
and 5679CPF216)
Certificate of Analysis
(Lot No. 850457C-200MG-G-216
and 5679CNG216)
Certificate of Analysis
(Lot No. 850457C-25MG-G-216
and 5679CJG216)
Certificate of Analysis
(Lot No. 850457C-25MG-D-216
and 5679CJD216)
Certificate of Analysis
(Lot No. 850457P-1G-G-216
and 5679PQG216)
Certificate of Analysis
(Lot No. 850457C-1G-F-216
and 5679CQF216)
Certificate of Analysis
(Lot No. 850457C-25MG-H-216
and 5679CJH216)
Certificate of Analysis
(Lot No. 850457C-500MG-C-218
and 5679CPC218)
Certificate of Analysis
(Lot No. 850457C-500MG-D-218
and 5679CPD218)
Certificate of Analysis
(Lot No. 850457P-1G-C-218
and 5679PQC218)
Certificate of Analysis
(Lot No. 850457P-1G-D-218
and 5679PQD218)
Certificate of Analysis
(Lot No. 850457P-200MG-C-218
and 5679PNC218)
Certificate of Analysis
(Lot No. 850457P-500MG-D-218
and 5679PPD218)
Certificate of Analysis
(Lot No. 850457C-25MG-A-217
and 5679CJA217)
Certificate of Analysis
(Lot No. 850457C-200MG-Z-216
and 5679CNZ216)
Certificate of Analysis
(Lot No. 850457C-500MG-B-217
and 5679CPB217)
Certificate of Analysis
(Lot No. 850457C-500MG-C-217
and 5679CPC217)
Certificate of Analysis
(Lot No. 850457P-1G-A-217
and 5679PQA217)
Certificate of Analysis
(Lot No. 850457P-200MG-A-217
and 5679PNA217)
Certificate of Analysis
(Lot No. 850457P-200MG-B-218
and 5679PNB218)
Certificate of Analysis
(Lot No. 850457P-500MG-C-218
and 5679PPC218)
Certificate of Analysis
(Lot No. 850457P-25MG-C-218
and 5679PJC218)
Certificate of Analysis
(Lot No. 850457C-25MG-B-218
and 5679CJB218)
Certificate of Analysis
(Lot No. 850457C-200MG-B-218
and 5679CNB218)
Certificate of Analysis
(Lot No. 850457C-1G-B-218
and 5679CQB218)
Base Price:
${originalprice|money}
Custom Packaging:
(${concentration} @$4.00/ea. + $100)
${custompackagingtotal|money}
Packaging:
${concentration}
Item Total:
${totalprice|money}
(Sales Tax may apply)
Please select an option above.
Selected Product
${sku} - ${concentration}
Add to Cart
Get Avanti News
Sign up for our newsletter by entering your email below.
×
* indicates required
Email Address *
First Name
Last Name
Company
Interests
General Lipid Research
Custom Lipid Synthesis
Lipid Formulation Services
Lipidomics
Lipid-based Therapeutics Delivery
Close
Offices
2550 Acton RdBirmingham, AL 35243
Headquarters
700 Industrial Park Drive Alabaster, Alabama 35007-9105
(205) 663-2494
(800) 227-0651
Contact us
Get Avanti News
Copyright 2024 Croda International Plc. All rights reserved.
Privacy Policy | Reset Location Preferences
| Report Website Error
| Website by Infomedia
细胞膜最简单的磷脂双分子层,行为复杂到超出你的想象(一) - 知乎
细胞膜最简单的磷脂双分子层,行为复杂到超出你的想象(一) - 知乎首发于生物流切换模式写文章登录/注册细胞膜最简单的磷脂双分子层,行为复杂到超出你的想象(一)生物流先来看细胞膜上最简单的一个信号通路:细胞的G蛋白耦联受体(G protein-coupled receptor)接收到配体(Ligand)的信号,激活磷脂酶C(Phospholipase C, PLC),从而激活细胞内的信号通路。例如,配体是生长因子(Growth factor),那么,细胞就开始生长。科学家可以人工合成DNA、RNA、蛋白质、糖类等,几乎细胞内的一切物质,甚至可以人工制造出病毒。但是,人类却无法复制出这种有生物活性的细胞膜。所以,人类能够制造出的病毒也是没有包膜的病毒。因为有功能活性的细胞膜结构是最不容易人造的。我们来看细胞膜的结构:细胞膜由磷脂双分子层作为基本支架,蛋白质、脂质、糖类等镶嵌其中。蛋白质和糖可以形成糖蛋白,脂质和糖可以形成糖脂。磷脂包括一个亲水的头部和两条疏水的尾巴。头部位于外侧,尾部位于内侧,两层磷脂相对,形成内部疏水外部亲水的结构。有的蛋白贯穿两层磷脂层,例如接受配体激活的G蛋白耦联受体(G protein-coupled receptor);有的蛋白只在细胞膜的内层磷脂上,例如传递信号的磷脂酶C(Phospholipase C, PLC)。磷脂酶C是什么呢?磷脂酶C(Phospholipase C, PLC)是一个酶,能够催化磷脂酰肌醇4,5-二磷酸(Phosphatidylinositol 4,5-bisphosphate,PIP2)生成甘油二酯(Diacylglycerol,DAG)和肌醇三磷酸(Inositol trisphosphate,IP3)。磷脂酶C可以把磷脂的头部和尾部切断。切开以后的头部是亲水的IP3,尾部是疏水的DAG。PIP2和DAG位于细胞膜上,IP3会溶解到细胞内部。DAG和IP3是细胞的信使,也就是说,它们可以把细胞外部的配体信号,转导到细胞内部。这个磷脂酰肌醇4,5-二磷酸(PIP2)和细胞膜的支架磷脂分子是一样的吗?答案是否定的。下图是细胞膜的支架——磷脂分子的结构。通过比较它和前面提到的磷脂酰肌醇4,5-二磷酸(PIP2)的结构,可以发现二者并不一样。来看二者的相对位置:磷脂酰肌醇4,5-二磷酸(PIP2)有两条疏水的尾部,它们是插入到由磷脂双分子层构成的细胞内部的。至此,我们对这个信号通路以及其中的蛋白、脂质等终于有了一个大致的了解。我们知道,细胞膜是磷脂双分子层的结构。而细胞内部的囊泡也和细胞膜有同样的磷脂双分子层结构。囊泡的磷脂双分子层结构细胞内部的囊泡也是由磷脂双分子层构成,其中的磷脂包括亲水的头部和疏水的尾部。磷脂尾对尾,因此,囊泡的外部是亲水的,内部也是亲水的。可以把囊泡想象成一个立体的球体结构。实际上,人类早已能够人工合成类似囊泡的结构,称为脂质体(Liposome)。例如,通过使用脂质体包裹药物,人们可以实现药物的递送过程。与细胞膜一样,囊泡膜上同样镶嵌着各种蛋白,囊泡内部包裹着化学物质,如激素、多巴胺、五羟色胺等。囊泡要完成运输物质的功能,无时无刻不需要与细胞膜进行互动。例如,外界的物质要进入细胞,需要胞吞;内部的物质要排出细胞,需要胞吐。胞吞胞吐胞吞是细胞将外界的物质吞进内部,此时,细胞膜通过弯曲,会形成新的囊泡,进入细胞内部。胞吐是细胞内部的囊泡与细胞膜融合,将物质排到外部,此时,囊泡会消失到细胞膜上。这是胞吞胞吐的模式图,目前,谁都没能在分子层面上看到过这个过程。那么,如何实时观察到细胞的胞吞或胞吐过程呢?实时观察胞吞胞吐中的细胞膜你肯定会说,用显微镜啊。是的。但是,普通光学显微镜的分辨率是微米级的。而细胞膜有多厚?约为7-8纳米。囊泡的大小约为几十到几百个纳米。假如,你在普通显微镜下,看到囊泡消失了,怎么就确定它是和细胞膜融合了呢?有人会说,电子显微镜分辨率高,可以用电子显微镜观察。的确,在电子显微镜下,可以清晰地观察到囊泡的结构。甚至,电镜下还可以看到细胞膜上存在类似欧米伽(Ω)形状的结构。但是,问题又来了,电子显微镜不能看活体细胞,只能把细胞固定起来再观察。也就是说,电镜下看到的是细胞膜的尸体,并不是一个动态的过程。既然不是动态过程,你怎么能确定观察到的细胞,是在吞,还是在吐呢?因此,还是需要看活体细胞的动态过程。并且,活体研究也更加具有生理意义。那么,科学家想到了什么办法呢?办法就是:将细胞膜标记上荧光蛋白,再拿到高分辨率的荧光显微镜下进行观察。具体是如何来观察的,我们下一篇继续。(生物流系头条号签约作者)欢迎关注我的微信公众号:生物流BioStream编辑于 2020-06-28 11:50生物学赞同 755 条评论分享喜欢收藏申请转载文章被以下专栏收录生物流拒绝高深莫测,让前沿生命科学落入千
CAS(26853-31-6),1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸胆碱,POPC|PC(16:0/18:1(9Z))|2-油酰-1-棕榈酰- 锡 -甘油基-3-磷酸胆碱|1-十六烷2-(顺式-9-十八碳烯酰基)-sn-甘油-3-磷酸胆碱, 1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱, 3-sn-磷脂酰胆碱,2-油酰-1-棕榈酰, L-β-油酰-γ-棕榈酰-α-磷脂, PC(16:0/18:1(9Z)), PC(16:0/18:1), PC(16:0/18:1w9),1-palmitoyl-
CAS(26853-31-6),1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸胆碱,POPC|PC(16:0/18:1(9Z))|2-油酰-1-棕榈酰- 锡 -甘油基-3-磷酸胆碱|1-十六烷2-(顺式-9-十八碳烯酰基)-sn-甘油-3-磷酸胆碱, 1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱, 3-sn-磷脂酰胆碱,2-油酰-1-棕榈酰, L-β-油酰-γ-棕榈酰-α-磷脂, PC(16:0/18:1(9Z)), PC(16:0/18:1), PC(16:0/18:1w9),1-palmitoyl-
The store will not work correctly in the case when cookies are disabled.
JavaScript 似乎在您的浏览器中禁用。
在我们的网站上获得最佳体验,请务必打开 Javascript 在您的浏览器。
为了获得访问"阿拉丁铁蛋"实时聊天框的流畅支持体验,我们建议您使用谷歌Chrome浏览器,感谢您选择我们!
首页
400-620-6333
提交您使用阿拉丁产品的研究文章,就得100元奖励!立即访问我们的提交页面.
跳到内容
登录
注册
英文站
登录
切换导航
我的购物车
搜索
搜索444
搜索
高级搜索
搜索
高级搜索
结构搜索
搜索质检证书(CoA)
SDS 搜索
菜单
化学和生化试剂高端化学分析标准品配体Buchwald 配体手性配体NHC配体及配合物膦配体CVD和ALD前驱体分析试剂苛性碱和碱酸指示剂卡尔费休试剂色谱和光谱学试剂衍生化试剂pH缓冲液溶剂分析滴定液仪器分析试剂金属盐分析色谱HPLC缓冲液吸附剂低压液相色谱(LPLC)介质和附件薄层色谱板和吸附剂填料分析样品制备分子筛,活性碳,助滤剂SLE柱(液液萃取柱)和树脂原料药API组合催化剂手性催化剂有机催化剂光催化剂过渡金属催化剂交叉偶联催化剂加氢催化剂烯烃复分解置换Buchwald催化剂无机催化剂C-H活化催化剂化学生物学显色底物和化学发光底物荧光探针蛋白质降解砌块化学生物学工具交联剂点击化学(点击试剂)香精香料砌块含氟砌块卤代杂环杂环砌块有机砌块稳定性同位素化学合成手性助剂有机金属试剂硼酸及其衍生物格氏试剂有机硅试剂离子液体C-C键形成试剂偶合试剂卤化试剂氧化剂保护和脱保护试剂还原剂生化试剂多肽合成试剂生物制药生产细胞培养添加物生物工艺和制剂原材料制剂药物递送药物递送颗粒化材料液体制剂半固体制剂固体制剂蛋白质稳定剂细胞培养与微生物学细胞培养补充剂和试剂细胞培养皿细胞刮刀和细胞铲细胞滤网液体培养基微生物培养基原料蛋白质Markers酶抑制剂和酶底物荷尔蒙抗氧化剂氨基酸抗生素去垢剂染色剂和染料脂类核苷和核苷酸多肽维生素(维他命)琼脂糖葡聚糖生物缓冲液碳水化合物材料科学能源材料燃料电池催化剂电池材料燃料电池膜与材料硫族化物 (硫属化物)氧化物与陶瓷高纯盐高纯金属及合金量子点溶液和气相沉积前驱体太阳能材料电子材料磁性材料无机和金属纳米材料碳纳米材料(碳纳米管、石墨烯和富勒烯)液晶OFET和OPV材料OLED和PLED材料光子和光学材料印刷电子材料基板和预制电子器件特种与智能聚合物硅材料电子化学品和蚀刻剂自组装和接触印刷生物医学材料生物医用高分子亲水性高分子疏水性高分子聚乙二醇修饰剂 (PEGs和PEOs)3D生物打印聚合单体聚合物微球和纳米粒子药靶配体化合物库天然产物代谢物配体家族趋化因子PROTACs、分子胶和其他降解剂激活素和抑制素苯二氮卓类药物骨形态发生蛋白(BMP)CD分子(配体)补体成分和配体Ephrins成纤维细胞生长因子(FGF)家族配体半乳糖凝集素糖蛋白激素免疫检查点调节剂干扰素白细胞介素神经肽非甾体抗炎药(NSAIDs)肿瘤坏死因子(TNF)超家族血管内皮生长因子(VEGF)Wnt配体家族抗疟配体FDA批准的配体WHO基本药物配体合成有机化合物配体人、小鼠或大鼠体内的内源性肽Other peptides抗体类配体标记配体免疫配体抗菌配体Coronavirus生物化学品Viral 进入Viral 复制Viral 组装和成熟SARS-CoV-2 抑制剂Coronavirus 抗体mRNA 疫苗相关原材料消毒剂疫苗佐剂检测试剂蛋白质重组蛋白细胞因子和生长因子受体和细胞表面标记物神经营养因子CD抗原药靶蛋白信号通路蛋白免疫球蛋白微生物学与病毒学标记蛋白天然蛋白人蛋白牛蛋白鼠蛋白免疫球蛋白补体蛋白白蛋白和转运蛋白链霉亲和素无动物源蛋白酶糖苷酶药物分析酶核酸酶 (DNases 和 RNases)组织解离用酶辅酶蛋白质电泳和蛋白质印迹蛋白质电泳凝胶和缓冲液免疫检测试剂和底物转移缓冲液和试剂蛋白质电泳凝胶染色蛋白质纯化色谱重组和融合标签蛋白纯化生物素化蛋白纯化抗体蛋白质纯化抗体一抗内参抗体标签抗体细胞标志物抗体流式抗体药靶抗体同种型对照抗体偶联一抗重组抗体单克隆抗体多克隆抗体抗体对二抗Alexa Fluor® 偶联二抗生物素碱性磷酸酯酶(AP)辣根过氧化物酶(HRP)片段抗体免疫沉淀二抗预吸附二抗花青(Cyanine)荧光素罗丹明荧光蛋白非偶联单克隆抗体酪胺信号放大(TSA)细胞组织裂解液诊断检测(IVD)组织诊断通用组织诊断试剂细胞分离介质细胞学染色剂样品收集和保存唾液收集和保存粪便样本制备装置尿样采集和保存装置IVD抗原和蛋白质IVD抗原检测酶底物稳定剂、稀释剂和阻滞剂ELISA终止液和支持试剂IVD抗体ProClin™防腐剂检测酶I-Quip®️实验器具杂项工具接种环和接种针灭菌器接种环 & 接种针塑料夹坩埚蒸发皿不锈钢筛燃烧舟燃烧管游标卡尺计数器百分表硬度计千分尺超声波测距仪测厚仪镊子、药刮和用具解剖针包埋盒昆虫针手术刀组织用剪刀铁架台和铁环药匙PCR用品和设备离心管架离心管PCR板PCR管架PCR管通用移液器吸头预制胶天平、秤和称重分析天平托盘天平精密天平砝码水分仪电子称量勺称量纸称量船和称量盘称量漏斗密封膜、箔和胶带过滤和层析透析切向流过滤层析柱、填充柱和填料层析柱预填充柱填料离子交换填料疏水层析填料亲和树脂-针对特定基团蛋白质A树脂 - 亲和抗体亲和树脂-标签蛋白滤器支架(滤器装置)滤膜滤纸过滤漏斗过滤器真空过滤器胶囊过滤器提取滤筒(套筒)无菌一次性过滤系统砂芯滤器压力过滤器溶剂过滤系统(可更换滤膜)吸头滤芯针式滤器显微镜和显微镜载玻片盖玻片液体处理和分配移液器架移液器真空泵样品处理样品杯或样品瓶低温储存实验室样本采集电化学仪器电导率仪溶氧仪(溶解氧仪)酸度计、电位和离子计升降台蒸发和干燥硅胶塞和橡胶塞实验室搅拌与混合研磨机和均质机乳钵磁力搅拌器及附件熔金元皿实验室加热与冷却酒精灯放大镜实验室标签超声波清洗器取样勺取样器实验室容器和储存塑料瓶擦拭纸玻璃器皿染色缸和架温度计比色管熔点毛细管比色板烧杯玻璃培养皿玻璃瓶滴定管量筒玻璃离心管滴瓶玻璃试管烧瓶漏斗玻璃移液管和吸管玻璃吸管玻璃移液管容量瓶安全、手套、眼镜和清洁耳塞和耳罩危险品储存和处置口罩鞋套套袖生物危害袋和高压灭菌袋防护面具和面屏实验服、围裙和服装清洁用品眼镜和护目镜手套积分礼品1,000-9,999 积分10,000-49,999 积分50,000-99,999 积分100,000-299,999 积分300,000-499,999 积分500,000-1,000,000 积分
帮助中心
账号
首页
化学和生化试剂
生化试剂
脂类
1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸胆碱
1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸胆碱
两性离子磷脂
规格或纯度:
>99%
CAS编号:
26853-31-6
分子式:
C42H82NO8P
分子量: 760.08
Beilstein号:
4173237
EC号:
248-056-7
MDL号:
MFCD00043212
PubChem编号:
5497103
有货
库存信息
关闭
库存信息
关闭
库存信息
关闭
货号 (SKU)
包装规格
是否现货
价格 数量
P130452-25mg
25mg
现货
添加到购物车
P130452-100mg
100mg
现货
添加到购物车
P130452-500mg
500mg
现货
添加到购物车
添加到购物车
大包装询价
添加到收藏夹
比较
SDS中文版
DATASHEET
Skip to the end of the images gallery
Skip to the beginning of the images gallery
基本描述
别名
POPC|PC(16:0/18:1(9Z))|2-油酰-1-棕榈酰- 锡 -甘油基-3-磷酸胆碱|1-十六烷2-(顺式-9-十八碳烯酰基)-sn-甘油-3-磷酸胆碱, 1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱, 3-sn-磷脂酰胆碱,2-油酰-1-棕榈酰, L-β-油酰-γ-棕榈酰-α-磷脂, PC(16:0/18:1(9Z)), PC(16:0/18:1), PC(16:0/18:1w9), PC, POPC
规格或纯度
>99%
英文名称
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
生化机理
两性离子磷脂。用于脂质双层研究和生物系统。看到类似的化合物
储存温度
-20°C储存,充氩
运输条件
超低温冰袋运输
备注
如果有可能,您尽量在使用的当天配置溶液,并在当天使用完它。但是,如果您需要预先配制储备溶液,我们建议您将溶液等份保存在-20°C的密封小瓶中。通常,它们最多可以使用一个月。在使用前和打开样品瓶之前,我们建议您让您的产品在室温下平衡至少1小时。需要更多关于溶解度,用法和处理的建议吗?请访问我们的常见问题(FAQ)页面以获取更多详细信息。
产品介绍
POPC is typically considered one of the model lipids for biophysical experiments. The fatty acid composition, i.e., saturated chain in the sn-1 position and unsaturated chain in the sn-2 position, mimics mammalian phospholipid composition. Since the major constituent in Egg PC is 1-palmitoyl-2-oleoyl PC, POPC is an excellent synthetic substitute for EPC.The effect of non-ionic detergent on liposomes was studied with giant POPC liposomes. Increasing concentrations of detergent cause tubular protrusions, then indentations, to develop on spherical liposomes. At higher detergent concentrations, the liposomes burst.POPC is typically considered one of the model lipids for biophysical experiments. The fatty acid composition, i.e., saturated chain in the sn-1 position and unsaturated chain in the sn-2 position, mimics mammalian phospholipid composition. Since the major constituent in Egg PC is 1-palmitoyl-2-oleoyl PC, POPC is an excellent synthetic substitute for EPC.The effect of non-ionic detergent on liposomes was studied with giant POPC liposomes. Increasing concentrations of detergent cause tubular protrusions, then indentations, to develop on spherical liposomes. At higher detergent concentrations, the liposomes burst.
名称和标识符
EC号
248-056-7
IUPAC Name
[(2R)-3-hexadecanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
INCHI
InChI=1S/C42H82NO8P/c1-6-8-10-12-14-16-18-20-21-23-25-27-29-31-33-35-42(45)51-40(39-50-52(46,47)49-37-36-43(3,4)5)38-48-41(44)34-32-30-28-26-24-22-19-17-15-13-11-9-7-2/h20-21,40H,6-19,22-39H2,1-5H3/b21-20-/t40-/m1/s1
InChi Key
WTJKGGKOPKCXLL-VYOBOKEXSA-N
Canonical SMILES
CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)([O-])OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC
WGK Germany
3
关联CAS
59491-62-2
PubChem CID
5497103
分子量
760.08
Beilstein号
4173237
化学和物理性质
溶解性
Chloroform (Slightly), Methanol (Slightly)
安全和危险性(GHS)
WGK Germany
3
个人防护装备
Eyeshields, Gloves, type N95 (US), type P1 (EN143) respirator filter
相关文档
质检报告COA
请输入批号:
搜索
SDS中文版
SDS英文版
质量技术规格说明书
可替换产品
1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸胆碱, 98%, 25mg
¥205.90
产品问答
产品问答
登录提交问题
Hover me
请先登录再提交问题
查看全部
您提交该产品问题后,我们会在1-2个工作日内给您答复,您可以登录"我的账号",然后点击"我的产品问答"查看答案
Newsletter
注册我们的时事通讯:
订阅
客服电话: 400-620-6333
微信公众号
哔哩哔哩
服务&支持
客服支持
如何订购?
付款方式
退货政策
大包装询价
质量管理
订单与退货
积分用户手册
危险化学品购买
资源中心
MSDS
质检证书COA
技术资料
产品目录下载
依据采购单(PO号)查订单
积分兑换
GHS安全分类
帮助中心
关于公司
关于我们
质量承诺
可持续发展
加入我们
新闻中心
展览会和活动
联系我们
生物相关区域独家经销商招募
提交论文,领取100元奖励
上海阿拉丁生化科技股份有限公司
销售条款及条件 隐私政策
© 2016 ALADDIN-E.COM . 版权所有,未经授权禁止拷贝本站资料,如有违反,将追究法律责任
沪公网安备 31012002004058号 沪ICP备09093490号-2
本网站销售的所有产品仅用于工业应用或者科学研究等非医疗目的,不可用于人类或动物的临床诊断或者治疗,非药用,非食用。
上海工商 危险品化学品经营许可证(带存储)营业执照(三证合一)
【分析】南开张新星研究员课题组Angew:新质谱技术破解抗癌药微观机制-先进能源材料化学教育部重点实验室
【分析】南开张新星研究员课题组Angew:新质谱技术破解抗癌药微观机制-先进能源材料化学教育部重点实验室
先进能源材料化学教育部重点实验室(南开大学)
Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education (Nankai University)
首页
实验室概况
实验室简介
组织机构
顾问委员会
学术委员会
联系我们
研究团队
固定研究人员
平台仪器管理人员
流动人员
科学研究
研究方向
研究成果
人才培养
导师信息
毕业研究生
开放交流
学术会议
国际交流
开放基金
仪器平台
仪器设备
大型仪器预约
运行管理
规章制度
首页下资料栏目RESEARCH PROGRESS
当前位置:
首页
|
研究进展
|
新闻动态
研究进展
通知公告
学术活动
学生风采
企业合作
科研研究
友情链接
天津市南开区卫津路94号
8月13日,南开大学化学学院的张新星研究员课题组在《德国应用化学》(Angewandte Chemie International Edition)上发表论文,通过实验室自行开发的场致液滴电离-质谱技术(FIDI-MS),实现了无探针快速探测type I和type II光敏抗癌药物氧化机理。 随着光动力学疗法(PDT)在普通癌症临床治疗上应用的广泛化,相关药物及其机理的研究日益活跃。高效快速地识别光敏剂的type I和type II氧化机理,可充分发挥它们针对不同癌症的优势,这是光敏剂研究的焦点和难点问题。光致发光探针、电子自旋共振和传统的质谱技术都可作为辨别type I和type II氧化机理的手段,但探针的合成繁琐昂贵且特异性低,EPR无法识别自由基化学结构,而传统的质谱方法无法检测到关键反应中间体。目前,研究者们仍在致力于尝试和开发无探针、高灵敏而又快速直接有效的分析识别方法。 南开大学化学学院的张新星课题组通过实验室自行开发的场致液滴电离-质谱技术(FIDI-MS),无需任何探针分子的加入即可直接、快速、原位地捕捉光敏致氧化反应中的不稳定中间体及其最终的反应产物,为识别type I和type II氧化机理提供分子层面上的信息。该团队以不饱和磷脂POPC作为底物,详细研究了第二代光敏剂temoporfin(T)的光氧化作用机理。他们采用FIDI-MS技术原位采样和分析基底POPC氧化产物的强度和结构,进而识别type I和type II型氧化途径。由于该装置原位的优势性,他们还捕捉到了type I反应中的关键不稳定中间物双重态自由基(2TH)。
图1. 自建FIDI-MS装置示意图 图1是FIDI-MS装置的示意图。通过在宏观2 mm大小的液滴两端施加瞬时脉冲电压,使悬挂的液滴沿电场方向呈纺锤状双向延展,并撕裂释放出带电微液滴,进而被导入质谱仪以检测其分子组成。这些微液滴是从原液滴的表面撕裂出来的,是原液滴的界面分子,因此,FIDI-MS的优势在于可以快速、实时、原位探测界面上几十到几百纳米的气液界面层的化学成分而不受体相的任何干扰。 在气液界面处,temoporfin倾向于聚集在磷脂膜内的疏水相,在660 nm激光的照射下,该团队系统地分析了在不同光敏剂浓度下,光照1分钟后POPC的氧化产物,发现低浓度(1 μM)下,FIDI-MS检测到的只有POPC-OOH产物,是典型的type II氧化途径,即单线态氧氧化双键机理(图3);当浓度增加时,出现由type II向type I氧化途径的过渡;当浓度达到50 μM时,POPC的氧化产物趋向于多样化且强度较高,type I自由基引发双键氧化机理占据主导地位。
图2. 氧化反应产物种类与分布 Type I氧化机理中至关重要的一步是三线态光敏剂temoporfin拔取POPC的H原子,从而得到不稳定的双重态自由基2TH和烯丙基自由基,引发后续的氧化反应。双重态自由基2TH极其不稳定,难以被捕捉,但该团队使用FIDI-MS技术成功捕获到了2TH,进一步证明了该技术的独特优势:灵敏度高、原位、快速有效。
图3. 反应机理 综上所述,该团队自行研发的FIDI-MS装置无需任何化学探针的辅助,即可在几分钟内快速识别分辨type I和type II光敏致氧化机理。该项技术有希望应用于临床癌症治疗上光敏剂的特异性筛选和设计。 相关研究成果发表在Angewandte Chemie International Edition 上。该论文的第一作者为南开大学博士研究生慕超男,第二作者为南开大学博士研究生王伟。 原文(扫描或长按二维码,识别后直达原文页面):Probe‐Free Direct Identification of Type I and Type II Photosensitized Oxidation Using Field‐Induced Droplet Ionization Mass SpectrometryChaonan Mu, Wei Wang, Jie Wang, Chu Gong, Dongmei Zhang, Xinxing ZhangAngew. Chem. Int. Ed., 2020, DOI: 10.1002/anie.202010294
导师介绍 张新星https://www.x-mol.com/groups/zhangxinxing
上一条:陈军院士Angew:石墨烯量子点系链设计通用策略用于合成单原子催化剂
下一条:张新星课题组:新质谱技术破解抗癌药微观机制
【关闭】
地址:天津市南开区卫津路94号 电话:022-23504482版权所有:先进能源材料化学教育部重点实验室
POPC_百度百科
_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心收藏查看我的收藏0有用+10POPC播报讨论上传视频组成细胞膜的磷脂双分子层的一种POPC 全名是棕榈酰油酰磷脂酰胆碱 是组成细胞膜的磷脂双分子层的一种中文名棕榈酰油酰磷脂酰胆碱外文名POPC存储条件-15℃以下,遮光密闭POPC 全名是棕榈酰油酰磷脂酰胆碱 是组成细胞膜的磷脂双分子层的一种新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000使用分子动力学模拟研究双层膜上的脂质异质性,Journal of Molecular Graphics and Modelling - X-MOL
使用分子动力学模拟研究双层膜上的脂质异质性,Journal of Molecular Graphics and Modelling - X-MOL
EN
注册
登录
首页
资讯
期刊
导师
问答
求职
发Paper
文献直达
高级搜索
期刊列表
搜索
当前位置:
X-MOL 学术
›
J. Mol. Graph. Model.
›
论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
使用分子动力学模拟研究双层膜上的脂质异质性
Journal of Molecular Graphics and Modelling
(
IF
2.9
)
Pub Date : 2021-08-03
, DOI:
10.1016/j.jmgm.2021.108000
Nandan Kumar
1
,
G Narahari Sastry
2
Affiliation
Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U. P., India.
Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U. P., India; Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
人体细胞膜由对其结构和功能必不可少的各种脂质组成。它通常包含磷脂酰胆碱 (POPC)、磷脂酰乙醇胺 (POPE)、磷脂酰丝氨酸 (POPS)、鞘磷脂 (PSM) 和胆固醇 (CHL)。已经采用了几种实验和计算技术来表征人类细胞膜的组成,但是,通过这些技术仍然没有清楚地了解富含 CHL 的膜。分子动力学模拟结果说明了基于脂质成分和脂质浓度的异质膜的生物物理特性,仅适用于 CHL 和 PSM。在此,我们比较研究了脂质的结构-功能关系,以描绘异质性对不同膜生物物理特性的影响。已经观察到显着比例的 CHL(即,三元中的~33%,四元中的~25% 和三元型双层中的~16%)与其他脂质结合引入了致密性,并增加了膜的厚度。脂质质量密度分析表明,脂质头基团、磷酸盐的密度,和甘油-酯在有或没有PSM CHL的存在对膜排序的潜在原因。结果还表明,POPI 和 POPS 的存在是脂质链排序充分下降的原因,尤其是在 POPE 链上。CHL、PSM、POPE的自相互作用以及CHL和POPC与POPE的相互作用似乎决定了异质膜的结构和功能。我们的发现提供了对膜异质性对膜生理特性影响的定性理解。本研究中检查的结构将有助于选择异质双层模型来模拟人类细胞膜,以分析或表征膜相关现象。
"点击查看英文标题和摘要"
Study of lipid heterogeneity on bilayer membranes using molecular dynamics simulations
Human cell membranes consist of various lipids that are essential for their structure and function. It typically comprises phosphatidylcholine (POPC), phosphatidylethanolamine (POPE), phosphatidylserine (POPS), sphingomyelin (PSM), and cholesterol (CHL). Several experimental and computational techniques have been employed to characterize the composition of human cell membranes, however, CHL enriched membrane is still not clearly understood through these techniques. Molecular dynamics simulation results illustrated the biophysical properties of heterogeneous membranes based on the lipid composition as well as the concentration of lipids, exclusively for CHL and PSM. Herein, we have investigated the structure-function relationships of lipids comparatively to delineate the effect of heterogeneity on the biophysical properties of different membranes. It has been observed that the significant fraction of CHL (i.e., ~33% in ternary, ~25% in quaternary, and ~16% in senary type bilayers) in combination with other lipids introduced compactness, and increased the thickness of the membrane. The analysis of lipid mass density stated that the density of lipid head group, phosphate, and glycerol-ester in presence of CHL with or without PSM is an underlying reason for membrane ordering. Results also revealed that the presence of POPI and POPS are the reasons for an adequate drop in the ordering of lipid chain, particularly on POPE chain. The self-interaction of CHL, PSM, POPE and the interaction of CHL and POPC with POPE seem to determine the structure and function of the heterogeneous membrane. Our findings provide a qualitative understanding of the effect of membrane heterogeneity on the physiological properties of membranes. The structures inspected in this study would help to select the heterogeneous bilayer model to mimic the human cell membranes to analyse or characterize the membrane-associated phenomena.
更新日期:2021-08-05
点击分享
查看原文
点击收藏
取消收藏
新增笔记
公开下载
阅读更多本刊最新论文
https://www.researchsquare.com/article/rs-136282/v1.pdf?c=1610471661000
全部期刊列表>>
学术期刊
行业资讯
全球导师
X-MOL问答
求职广场
网址导航
关于我们
帮助中心
客服邮箱:service@x-mol.com
官方微信:X-molTeam2
邮编:100098
地址:北京市海淀区知春路56号中航科技大厦
Copyright © 2014-2024 北京衮雪科技有限公司 All Rights Reserved
京ICP备11026495号-2
京公网安备 11010802027423号
down
bug
bug
Page restricted | ScienceDirect
Page restricted | ScienceDirect
Your Browser is out of date.
Update your browser to view ScienceDirect.
View recommended browsers.
Request details:
Request ID: 860aa438df1f0ecc-HKG
IP: 49.157.13.121
UTC time: 2024-03-07T12:38:15+00:00
Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36
About ScienceDirect
Shopping cart
Contact and support
Terms and conditions
Privacy policy
Cookies are used by this site. By continuing you agree to the use of cookies.
Copyright © 2024 Elsevier B.V., its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.