imtoken官网下载app|shld
百度安全验证
百度安全验证
网络不给力,请稍后重试
返回首页
问题反馈
双精度移位指令SHLD,SHRD_双精度位移-CSDN博客
>双精度移位指令SHLD,SHRD_双精度位移-CSDN博客
双精度移位指令SHLD,SHRD
最新推荐文章于 2022-07-24 16:55:30 发布
双刃剑客
最新推荐文章于 2022-07-24 16:55:30 发布
阅读量4.9k
收藏
点赞数
1
分类专栏:
Windows逆向
Windows逆向
专栏收录该内容
12 篇文章
3 订阅
订阅专栏
转:http://www.feiesoft.com/asm/05-2-053.html
双精度移位指令
此组指令有:双精度左移SHLD(Shift Left Double)和双精度右移SHRD(Shift Right Double)。它们都是具有三个操作数的指令,其指令的格式如下:
SHLD/SHRD Reg/Mem, Reg, CL/Imm ;80386+
其中:第一操作数是一个16位/32位的寄存器或存储单元;第二操作数(与前者具有相同位数)一定是寄存器;第三操作数是移动的位数,它可由CL或一个立即数来确定。
在执行SHLD指令时,第一操作数向左移n位,其“空出”的低位由第二操作数的高n位来填补,但第二操作数自己不移动、不改变。
在执行SHRD指令时,第一操作数向右移n位,其“空出”的高位由第二操作数的低n位来填补,但第二操作数自己也不移动、不改变。
SHLD和SHRD指令的移位功能示意图如图5.8所示。
受影响的标志位:CF、OF、PF、SF和ZF(AF无定义)
(a)、SHLD (b)、SHRD
图5.8 双精度移位指令操作示意图
下面是几个双精度移位的例子及其执行结果。
双精度移位指令 指令操作数的初值 指令执行后的结果 SHLD AX, BX, 1 (AX)=1234H,(BX)=8765H (AX)=2469H SHLD AX, BX, 3 (AX)=1234H,(BX)=8765H (AX)=91A4H SHRD AX, BX, 2 (AX)=1234H,(BX)=8765H (AX)=448DH SHRD AX, BX, 4 (AX)=1234H,(BX)=8765H (AX)=5123H
学习和理解双精度移位指令的控件。
SHL/SAL一样:逻辑/算术左移,最高位进到CF,最低位补0;
SHR:逻辑右移,最低位进到CF,最高位补0;
SAR:算术右移,最低位进到CF,最高位不变;
ROL:循环左移,最高位进到CF的同时补到最低位;
ROR:循环右移,最低位进到CF的同时补到最高位;
RCL:带进位循环左移,最高位进到CF的,同时CF值补到最低位;
RCR:带进位循环右移,最低位进到CF的,同时CF值补到最高位;
SHLD:双精度左移,第二个操作数移位到第一个操作数,第一操作数进到CF,和逻辑左移类似,低位移到高位;
SHRD:双精度左移,第二个操作数移位到第一个操作数,第一操作数进到CF,和逻辑由移类似,高位移到低位;
优惠劵
双刃剑客
关注
关注
1
点赞
踩
0
收藏
觉得还不错?
一键收藏
知道了
0
评论
双精度移位指令SHLD,SHRD
转:http://www.feiesoft.com/asm/05-2-053.html双精度移位指令此组指令有:双精度左移SHLD(Shift Left Double)和双精度右移SHRD(Shift Right Double)。它们都是具有三个操作数的指令,其指令的格式如下:SHLD/SHRD Reg/Mem, Reg, CL/Imm ;80386+其中:第一操
复制链接
扫一扫
专栏目录
显控PLC移位指令说明.pdf
12-03
移位指令包括:字左移 SHL、 双字左移 SHLD、 字右移 SHR、 双字右移 SHRD、 位左移 SHLB、 位右移 SHRB、 循环字左移 ROL、 循环双字左移 ROLD、 循环字右移 ROR、循环双字右移 RORD
微型计算机移位指令中的位值,微机原理==常用汇编指令(9)
weixin_29081101的博客
06-25
2054
1、 MOV(传送)指令写法:MOV target,source功能描述:将源操作数source的值复制到target中去,source值不变注意事项:1)target不能是CS(代码段寄存器),我的理解是代码段不可写,只可读,所以相应这地方也不能对CS执行复制操作。2)target和source不能同时为内存数、段寄存器(CS\DS\ES\SS\FS\GS)3)不能将立即数传送给段寄存器4)ta...
参与评论
您还未登录,请先
登录
后发表或查看评论
128位java_对128位SIMD寄存器进行“双精度位移字节”
weixin_31845113的博客
02-27
371
用x64汇编编写国密SM3散列算法遇到了一个小问题:假定32位数组W[68]的前7个数据被导入xmm0:1寄存器:|-------------------|-------------------|| xmm0 | xmm1 ||----|----|----|----|----|----|----|----||W[0]|W[1]|W[2]|W[3]...
汇编总结(3)——程序设计初步
ai-exception的博客
11-14
490
堆栈的作用
汇编语言中的堆栈就是高级语言中的栈。
堆栈主在汇编程序设计中主要有三个作用:
过程调用&返回指令
参数传递
局部变量
过程调用&返回指令
过程调用中的过程指什么?
汇编语言中的过程就是高级语言里面说的子程序,调用子程序(过程、函数)的本质就是控制转移,它与无条件转移的区别是调用子程序需要考虑返回。
过程调用指令用于由主程序转移到子程序;
过程返回指令用于由子程序返回...
软件设计师-随笔笔记
weixin_34151004的博客
05-14
579
导读:
最近正在为即将到来的软考做准备,所以重拾以前的笔记,通过手敲的形式将它们随意排版上来,希望能加深自己的印象,同时希望能够帮助一些人,一些内容是通过做题目收集的笔记,比较杂,但我认为如果你能够将我这篇文章看完一定会有很大的收获,一起加油吧!(ps:敲的我脑阔痛)
附上思维导图:
(1)计算机网络概述:
网络层次与对应的设备功能:
Ping命令网络检测由近到远操作...
通用计算机指令,计算机移位指令
weixin_32516009的博客
06-26
1309
移位指令移位指令对操作数按某种方式左移或右移,移位位数可以由立即数直接给出,或由CL间接给出。移位指令分一般移位指令和循环移位指令。1 一般移位指令(1) 算术/逻辑左移指令。格式:SAL DEST,OPRDSHL DEST,OPRD功能:按照操作数OPRD规定的移位位数,对目的操作数进行左移操作,最高位移入CF中。每移动一位,右边补一位0。如图3 12(a)所示。目的操作数可以为通用寄存器或存储...
x86汇编_SHLD/SHRD双精度左右移指令_笔记49
Silent_Hunter的博客
07-24
1746
SHLD(双精度左移)指令将目的操作数向左移动指定位数。移动形成的空位由源操作数的高位填充。SHRD(双精度右移)指令将目的操作数向右移动指定位数。移动形成的空位由源操作数的低位填充。源操作数不变,但是符号标志位、零标志位、辅助进位标志位、奇偶标志位和进位标志位会受影响。.........
shl和shr
吖吖狼 的专栏
03-15
6943
shl和shr是逻辑移位指令。
shl是逻辑左移指令,它的功能为:
(1)将一个寄存器或内存单元中的数据向左移位;
(2)将最后移出的一位写入CF中;
(3)最低位用0补充。
指令:
mov al,01001000b
shl al,1 ;将al中数据左移一位
执行后(al)=10010000b,CF=0。
注意:
如果移动位数大于1时,必须将移动位数放在cl中
matlab中左移右移如何表示,汇编语言SHLD(双精度左移)和SHRD(双精度右移)指令...
weixin_34380880的博客
03-18
1222
SHLD(双精度左移)指令将目的操作数向左移动指定位数。移动形成的空位由源操作数的高位填充。源操作数不变,但是符号标志位、零标志位、辅助进位标志位、奇偶标志位和进位标志位会受影响:SHLD dest, source, count下图展示的是 SHLD 执行移动一位的过程。源操作数的最高位复制到目的操作数的最低位上。目的操作数的所有位都向左移动:SHRD(双精度右移)指令将目的操作数向右移动指定位数...
汇编语言---移位指令
热门推荐
fivedoumi的专栏
12-27
1万+
移位指令是一组经常使用的指令,包括:算数移位、逻辑移位、双精度移位、循环移位、带进位的循环移位;
移位指令都有一个指定需要移动的二进制位数的操作数,该操作数可以是立即数,也可以是CL的值;在8086中,该操作数只能是1,但是在其后的CPU中,该立即数可以是定义域[1,31]之内的数;
一、算数移位指令:
算数移位指令分为:算数左移SAL(Shift Algebraic Left)和算数右移S
jst1.0连接器
12-12
JST0.8连接器从原材料入库到成品制造出货均严格按照SONY绿色环保标准,符合欧盟最新REACH指令法规要求!产品相继获取:美国UL SGS等国际安规证书。 【连接器的优点】 1、改善生产过程 连接器简化电子产品的...
Siemens s7-300 PLC I/O模块接线图
07-07
Siemens I/O模块接线图
python射线法判断检测点是否位于区域外接矩形内
01-20
本文实例为大家分享了python射线法判断点是否位于区域内的具体代码,供大家参考,具体内容...# @Link : https://www.cnblogs.com/shld/ # @Version : 0.0.1 def isinpolygon(point,vertex_lst:list, contain_boundary=
STM32F429_F767_H743核心板+底板封装库(AD PADS CADENCE三种规格原理图PCB封装库).zip
05-08
STM32F429_F767_H743核心板+底板封装库(AD PADS CADENCE三种规格原理图PCB封装库) ...RJ45_HR961160C_0 CON 12 RJ45 SHLD RA SM 1.02MM SP 625H -- SIP5_2_1 SPACER_0 FASTENER, STANDOFF 4.5
每个Python开发者必须知道的事:顶级编程技巧和最佳实践大公开!.zip
03-06
python
知识领域: Python 编程
技术关键词: 核心知识点, 代码优化, 高级技巧, 性能提升, 最佳实践
内容关键词: 数据类型, 控制流, 函数, 类与对象, 模块, 异常处理, 文件操作, 并发编程, 异步编程, 代码格式化, 文档字符串, 类型注解, 单元测试, 版本控制
用途: 适用于初学者至中级开发者的技能提升,帮助程序员构建坚实的Python基础,提高编写高效、可维护代码的能力。
(基于Springboot的Java毕业设计)新闻稿件管理系统(源码+演示视频+说明文档).rar
03-06
(基于Springboot的Java毕业设计)新闻稿件管理系统(源码+演示视频+说明文档).rar
【项目技术】
开发语言:Java
框架:springboot
架构:B/S
数据库:mysql
【实现功能】
本新闻稿件管理系统管理员功能有个人中心,用户管理,记者管理,审批员管理,新闻分类管理,新闻信息管理,系统管理等。记者发布新闻信息,审批员进行审核,用户进行查看。
基于Hadoop和spark由java和python语言开发的电影推荐系统.zip
最新发布
03-06
基于spark的系统
称重贴标系统,全球前15强生产商排名及市场份额调研数据.pdf
03-06
称重贴标系统,全球前15强生产商排名及市场份额调研数据
电路中SHLD什么意思
06-07
SHLD是"Shield"的缩写,指的是电路中的屏蔽,也称为屏蔽罩或屏蔽壳。SHLD通常是由金属材料制成的,用于包裹电路元件或线路,以防止电磁波的干扰和外界噪声的影响。在高频电路或精密电路中,屏蔽是非常重要的,因为电路的正常工作需要稳定的电压和电流信号。如果电路受到干扰或噪声,可能会导致电路性能下降或者无法正常工作。因此,SHLD屏蔽在电路设计中是非常常见的,它可以有效地保护电路免受干扰和噪声的影响。
“相关推荐”对你有帮助么?
非常没帮助
没帮助
一般
有帮助
非常有帮助
提交
双刃剑客
CSDN认证博客专家
CSDN认证企业博客
码龄17年
暂无认证
279
原创
2万+
周排名
211万+
总排名
364万+
访问
等级
3万+
积分
1072
粉丝
533
获赞
336
评论
2126
收藏
私信
关注
热门文章
推荐.Net、C# 逆向反编译四大工具利器
109085
代理服务器搭建socks5环境的方法
73801
让代理服务器支持HTTPS很难吗?
64847
USBPCAP工具介绍
46292
_snprintf_s()函数的正确用法
39826
分类专栏
Android脱壳
29篇
Python
4篇
Chromium
1篇
数据结构
1篇
C++
1篇
Android开发组件
7篇
OLLVM
3篇
Frida
3篇
后端开发
2篇
360加固脱壳
1篇
C++与汇编
91篇
LINUX 内核编程
5篇
MFC学习
20篇
STL学习
1篇
代码阅读
5篇
工作经验
132篇
毕业设计--C++异常处理机制的实现
8篇
面试题目
11篇
黑客-攻与防
12篇
windows驱动
3篇
QT编程
4篇
设计模式
42篇
看雪转载笔记
59篇
逆向
49篇
android 逆向
125篇
反调试
7篇
ios
20篇
加解密算法
9篇
ios逆向
70篇
反编译
2篇
android root技术
15篇
漏洞
2篇
android 安全
49篇
爱加密
6篇
Windows开发
5篇
Windows逆向
12篇
协议分析
73篇
Android加固
41篇
梆梆加固
2篇
爱加密
1篇
ios开发
28篇
android开发
213篇
Dalvik虚拟机
6篇
Android自动化测试
39篇
JAVA开发
60篇
AndroidHook
17篇
XPosed
42篇
Android注入与HOOK
13篇
编辑工具
1篇
LINUX开发
30篇
Robotium
10篇
Instrumentation
2篇
Android
1篇
AndroidStudio
2篇
ecllipse
3篇
阿里加固
1篇
App推广
1篇
Windows Dos批处理
2篇
mongodb
2篇
360
1篇
360加固
1篇
Appium
3篇
Android自动化测试,Appium
Uiautomator
7篇
服务器开发
3篇
A
乐固加固
1篇
android 手游安全
1篇
代理池
1篇
最新评论
一文带你详细介绍c++中的std::move函数
Soneto:
tqltqltqltql!!!
一文带你详细介绍c++中的std::move函数
sxczzZ:
写的很好,通俗易懂
关于HTTP Analyzer 的Probably another instance is already up的问题解决
liuyuan2023:
服务里面找不到这个,怎么办
dumpDex 脱壳原理
练级中:
dump=err java.lang.NoSuchMethodError: java.lang.DexCache#getDex() ,dexCache里面没有geetDex方法呢
[原创]记一次APP脱壳重打包过程
柿子_@:
想问一下脱出来一百多个dex怎么重新打包
大家在看
算法46:动态规划专练(力扣198: 打家劫舍 力扣740:删除并获取点数)
376
Java+SSM+JSP旅游管理系统源码+论文+开题报告+任务书
146
spring boot使用my batis和my batis plus方法及问题处理
Docker从0到1的开始【入门篇】
67
离线配置Docker
最新文章
增量压缩工具Xdelta3源码解析——工具使用
movw与movt
DroidPlugin代码分析
2024年1篇
2023年3篇
2022年41篇
2021年32篇
2020年94篇
2019年97篇
2018年122篇
2017年145篇
2016年250篇
2015年167篇
2014年68篇
2013年89篇
2012年25篇
2011年22篇
2010年8篇
2009年62篇
2008年56篇
目录
目录
分类专栏
Android脱壳
29篇
Python
4篇
Chromium
1篇
数据结构
1篇
C++
1篇
Android开发组件
7篇
OLLVM
3篇
Frida
3篇
后端开发
2篇
360加固脱壳
1篇
C++与汇编
91篇
LINUX 内核编程
5篇
MFC学习
20篇
STL学习
1篇
代码阅读
5篇
工作经验
132篇
毕业设计--C++异常处理机制的实现
8篇
面试题目
11篇
黑客-攻与防
12篇
windows驱动
3篇
QT编程
4篇
设计模式
42篇
看雪转载笔记
59篇
逆向
49篇
android 逆向
125篇
反调试
7篇
ios
20篇
加解密算法
9篇
ios逆向
70篇
反编译
2篇
android root技术
15篇
漏洞
2篇
android 安全
49篇
爱加密
6篇
Windows开发
5篇
Windows逆向
12篇
协议分析
73篇
Android加固
41篇
梆梆加固
2篇
爱加密
1篇
ios开发
28篇
android开发
213篇
Dalvik虚拟机
6篇
Android自动化测试
39篇
JAVA开发
60篇
AndroidHook
17篇
XPosed
42篇
Android注入与HOOK
13篇
编辑工具
1篇
LINUX开发
30篇
Robotium
10篇
Instrumentation
2篇
Android
1篇
AndroidStudio
2篇
ecllipse
3篇
阿里加固
1篇
App推广
1篇
Windows Dos批处理
2篇
mongodb
2篇
360
1篇
360加固
1篇
Appium
3篇
Android自动化测试,Appium
Uiautomator
7篇
服务器开发
3篇
A
乐固加固
1篇
android 手游安全
1篇
代理池
1篇
目录
评论
被折叠的 条评论
为什么被折叠?
到【灌水乐园】发言
查看更多评论
添加红包
祝福语
请填写红包祝福语或标题
红包数量
个
红包个数最小为10个
红包总金额
元
红包金额最低5元
余额支付
当前余额3.43元
前往充值 >
需支付:10.00元
取消
确定
下一步
知道了
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝
规则
hope_wisdom 发出的红包
实付元
使用余额支付
点击重新获取
扫码支付
钱包余额
0
抵扣说明:
1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。
余额充值
SHLD — Double Precision Shift Left
SHLD
— Double Precision Shift LeftIndexDecember 2023SHLD
— Double Precision Shift Left
Opcode*
Instruction
Op/En
64-Bit Mode
Compat/Leg Mode
Description
0F A4 /r ib
SHLD r/m16, r16, imm8
MRI
Valid
Valid
Shift r/m16 to left imm8 places while shifting bits from r16 in from the right.
0F A5 /r
SHLD r/m16, r16, CL
MRC
Valid
Valid
Shift r/m16 to left CL places while shifting bits from r16 in from the right.
0F A4 /r ib
SHLD r/m32, r32, imm8
MRI
Valid
Valid
Shift r/m32 to left imm8 places while shifting bits from r32 in from the right.
REX.W + 0F A4 /r ib
SHLD r/m64, r64, imm8
MRI
Valid
N.E.
Shift r/m64 to left imm8 places while shifting bits from r64 in from the right.
0F A5 /r
SHLD r/m32, r32, CL
MRC
Valid
Valid
Shift r/m32 to left CL places while shifting bits from r32 in from the right.
REX.W + 0F A5 /r
SHLD r/m64, r64, CL
MRC
Valid
N.E.
Shift r/m64 to left CL places while shifting bits from r64 in from the right.
Instruction Operand Encoding
¶
Op/En
Operand 1
Operand 2
Operand 3
Operand 4
MRI
ModRM:r/m (w)
ModRM:reg (r)
imm8
N/A
MRC
ModRM:r/m (w)
ModRM:reg (r)
CL
N/A
Description
¶
The SHLD instruction is used for multi-precision shifts of 64 bits or more.
The instruction shifts the first operand (destination operand) to the left the number of bits specified by the third operand (count operand). The second operand (source operand) provides bits to shift in from the right (starting with bit 0 of the destination operand).
The destination operand can be a register or a memory location; the source operand is a register. The count operand is an unsigned integer that can be stored in an immediate byte or in the CL register. If the count operand is CL, the shift count is the logical AND of CL and a count mask. In non-64-bit modes and default 64-bit mode; only bits 0 through 4 of the count are used. This masks the count to a value between 0 and 31. If a count is greater than the operand size, the result is undefined.
If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination operand. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If the count operand is 0, flags are not affected.
In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits (upgrading the count mask to 6 bits). See the summary chart at the beginning of this section for encoding data and limits.
Operation
¶
IF (In 64-Bit Mode and REX.W = 1)
THEN COUNT := COUNT MOD 64;
ELSE COUNT := COUNT MOD 32;
FI
SIZE := OperandSize;
IF COUNT = 0
THEN
No operation;
ELSE
IF COUNT > SIZE
THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;
ELSE (* Perform the shift *)
CF := BIT[DEST, SIZE – COUNT];
(* Last bit shifted out on exit *)
FOR i := SIZE – 1 DOWN TO COUNT
DO
Bit(DEST, i) := Bit(DEST, i – COUNT);
OD;
FOR i := COUNT – 1 DOWN TO 0
DO
BIT[DEST, i] := BIT[SRC, i – COUNT + SIZE];
OD;
FI;
FI;
Flags Affected
¶
If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination operand and the SF, ZF, and PF flags are set according to the value of the result. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. For shifts greater than 1 bit, the OF flag is undefined. If a shift occurs, the AF flag is undefined. If the count operand is 0, the flags are not affected. If the count is greater than the operand size, the flags are undefined.
Protected Mode Exceptions
¶
#GP(0)
If the destination is located in a non-writable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0)
If a memory operand effective address is outside the SS segment limit.
#PF(fault-code)
If a page fault occurs.
#AC(0)
If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
Real-Address Mode Exceptions
¶
#GP
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS
If a memory operand effective address is outside the SS segment limit.
#UD
If the LOCK prefix is used.
Virtual-8086 Mode Exceptions
¶
#GP(0)
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
#SS(0)
If a memory operand effective address is outside the SS segment limit.
#PF(fault-code)
If a page fault occurs.
#AC(0)
If alignment checking is enabled and an unaligned memory reference is made.
#UD
If the LOCK prefix is used.
Compatibility Mode Exceptions
¶
Same exceptions as in protected mode.
64-Bit Mode Exceptions
¶
#SS(0)
If a memory address referencing the SS segment is in a non-canonical form.
#GP(0)
If the memory address is in a non-canonical form.
#PF(fault-code)
If a page fault occurs.
#AC(0)
If alignment checking is enabled and an unaligned memory reference is made while the current privilege level is 3.
#UD
If the LOCK prefix is used.
This UNOFFICIAL, mechanically-separated, non-verified reference is provided for convenience, but it may be
incomplete or broken in various obvious or non-obvious
ways. Refer to Intel® 64 and IA-32 Architectures Software Developer’s Manual for anything serious.
汇编语言SHLD(双精度左移)和SHRD(双精度右移)指令- 汇编语言程序设计 - 春软虚拟实验室vlab.cn
汇编语言SHLD(双精度左移)和SHRD(双精度右移)指令- 汇编语言程序设计 - 春软虚拟实验室vlab.cn
汇编语言
1
汇编语言基本概念简介
2
x86处理器架构
3
汇编语言基础
4
数据操作相关运算符和指令
5
汇编语言过程
6
汇编语言条件判断
7 汇编语言整数运算 7.1 移位和循环移位指令简介7.2 SHL(左移)指令7.3 SHR(右移)指令7.4 SAL和SAR指令7.5 ROL(循环左移)指令7.6 ROR(循环右移)指令7.7 RCL和RCR指令7.8 SHLD和SHRD指令7.9 移位和循环移位的应用7.10 MUL指令7.11 IMUL指令7.12 GetMseconds:测量程序执行时间7.13 DIV指令7.14 IDICV指令7.15 使用汇编语言实现算术表达式7.16 ADC指令7.17 SBB指令7.18 ASCII和非压缩十进制运算7.19 AAA指令7.20 AAS指令7.21 AAM和AAD指令7.22 压缩十进制运算简介7.23 DAA指令7.24 DAS指令
8
汇编语言高级过程
9
汇编语言字符串和数组
10
汇编语言结构和宏
11
汇编语言MS-Windows编程
12
浮点数处理与指令编码
13
高级语言接口
首页 > 汇编语言 > 汇编语言整数运算
阅读:6,248
汇编语言SHLD(双精度左移)和SHRD(双精度右移)指令
< 上一页RCL和RCR指令
移位和循环移位的应用下一页 >
SHLD(双精度左移)指令将目的操作数向左移动指定位数。移动形成的空位由源操作数的高位填充。源操作数不变,但是符号标志位、零标志位、辅助进位标志位、奇偶标志位和进位标志位会受影响:
SHLD dest, source, count
下图展示的是 SHLD 执行移动一位的过程。源操作数的最高位复制到目的操作数的最低位上。目的操作数的所有位都向左移动:
SHRD(双精度右移)指令将目的操作数向右移动指定位数。移动形成的空位由源操作数的低位填充:
SHRD dest, source, count
下图展示的是 SHRD 执行移动一位的过程:
下面的指令格式既可以应用于 SHLD 也可以应用于 SHRD。目标操作数可以是寄存器或内存操作数;源操作数必须是寄存器;移位次数可以是 CL 寄存器或者 8 位立即数:
SHLD regl6, regl6, CL/imm8
SHLD meml6, regl6, CL/imm8
SHLD reg32, reg32, CL/imm8
SHLD mem32, reg32, CL/imm8
【示例 1】下述语句将 wval 左移 4 位,并把 AX 的高 4 位插入 wval 的低 4 位:
.data
wval WORD 9BA6h
.code
mov ax, 0AC36h
shld wval, ax, 4 ; wval = BA6Ah
数据移动过程如下图所示:
【示例 2】下例中,AX 右移 4 位,DX 的低 4 位移入 AX 的高 4 位:
mov ax, 234Bh
mov dx,7654h
shrd ax, dx, 4
为了在屏幕上重定位图像而必须将位元组左右移动时,可以用 SHLD 和 SHRD 来处理位映射图像。另一种可能的应用是数据加密,如果加密算法中包含位的移动的话。最后,对于很长的整数来说,这两条指令还可以用于快速执行其乘除法。
下面的代码示例展示了用 SHRD 如何将一个双字数组右移 4 位:
.data
array DWORD 648B2165h, 8C943A29h, 6DFA4B86h, 91F76C04h, 8BAF9857h
.code
mov bl, 4 ;移位次数
mov esi, OFFSET array ;数组的偏移量
mov ecx, (LENGTHOF array) - 1 ;数组元素个数
L1: push ecx ;保存循环计数
mov eax, [esi + TYPE DWORD]
mov cl, bl ;移动次数
shrd [esi], eax, cl ;EAX [ESI] 的高位
add esi, TYPE DWORD ;指向下一对双字
pop ecx ;恢复循环计数
loop L1
shr DWORD PTR [esi], 4 ;最后一个双字进行移位
< 上一页RCL和RCR指令
移位和循环移位的应用下一页 >
↑
x86汇编_SHLD/SHRD双精度左右移指令_笔记49-CSDN博客
>x86汇编_SHLD/SHRD双精度左右移指令_笔记49-CSDN博客
x86汇编_SHLD/SHRD双精度左右移指令_笔记49
SilentHunter460
已于 2022-07-26 00:53:49 修改
阅读量1.7k
收藏
3
点赞数
2
分类专栏:
汇编语言-基于X86处理器
文章标签:
visual studio
开发语言
于 2022-07-24 16:55:30 首次发布
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_16774199/article/details/125959720
版权
汇编语言-基于X86处理器
专栏收录该内容
54 篇文章
19 订阅
订阅专栏
SHLD(双精度左移)指令将目的操作数向左移动指定位数。移动形成的空位由源操作数的高位填充。SHRD(双精度右移)指令将目的操作数向右移动指定位数。移动形成的空位由源操作数的低位填充。源操作数不变,但是符号标志位、零标志位、辅助进位标志位、奇偶标志位和进位标志位会受影响。
下图展示的是 SHLD 执行移动两位的过程。源操作数的最高位复制到目的操作数的最低位上。目的操作数的所有位都向左移动:
下图展示的是 SHRD 执行移动两位的过程:
目标操作数可以是寄存器或内存操作数,源操作数必须是寄存器,移位次数可以是 CL 寄存器或者 8 位立即数,格式如下:
SHLD 16位寄存器,16位寄存器,cl寄存器或者8位立即数 SHLD 16位内存数,16位寄存器,cl寄存器或者8位立即数 SHLD 32位寄存器,32位寄存器,cl寄存器或者8位立即数 SHLD 32位内存数,32位寄存器,cl寄存器或者8位立即数
下面的代码示例展示了用 SHRD 如何将一个双字数组右移 4 位:
.data
array DWORD 648B2165h, 8C943A29h, 6DFA4B86h, 91F76C04h, 8BAF9857h
.code
main PROC
nop
mov esi, OFFSET array
mov ecx, (LENGTHOF array) - 1
L1: mov eax, [esi + TYPE DWORD]
shrd [esi], eax, 4
add esi, TYPE DWORD
loop L1
shr DWORD PTR [esi], 4
invoke ExitProcess,0
main ENDP
end main
优惠劵
SilentHunter460
关注
关注
2
点赞
踩
3
收藏
觉得还不错?
一键收藏
知道了
0
评论
x86汇编_SHLD/SHRD双精度左右移指令_笔记49
SHLD(双精度左移)指令将目的操作数向左移动指定位数。移动形成的空位由源操作数的高位填充。SHRD(双精度右移)指令将目的操作数向右移动指定位数。移动形成的空位由源操作数的低位填充。源操作数不变,但是符号标志位、零标志位、辅助进位标志位、奇偶标志位和进位标志位会受影响。.........
复制链接
扫一扫
专栏目录
显控PLC移位指令说明.pdf
12-03
移位指令包括:字左移 SHL、 双字左移 SHLD、 字右移 SHR、 双字右移 SHRD、 位左移 SHLB、 位右移 SHRB、 循环字左移 ROL、 循环双字左移 ROLD、 循环字右移 ROR、循环双字右移 RORD
STM32F429_F767_H743核心板+底板封装库(AD PADS CADENCE三种规格原理图PCB封装库).zip
05-08
STM32F429_F767_H743核心板+底板封装库(AD PADS CADENCE三种规格原理图PCB封装库)
Library Component Count : 126
Name Description
----------------------------------------------------------------------------------------------------
1086-3.3
12MHZ_1
12MHZ_1_1
2X15P_2.0MM_DIP
2X4_1
6PIN-2_0.0-D-H
74LVC1G125
AP3216C_0
AP6181
B2BF_2X40_0
B2B_2X40_0_1
B2S_1
BEAD IND FER BEAD 330OHM@100MHZ 1.7A 0603
BEAD_1
C0603_0
C0603_0_1
C0603_0_2
C0603_0_3
C0603_0_4
C1608
C1608_1
C1608_2
CONN_HDR_2X1 HDR 1X2 TH 100MIL SP 339H AU 98L
CONN_HDR_6X1 CON 1X6 SKT TH 100MIL SP 344H AU 118L
CONN_HDR_7 HDR 1X2 TH 100MIL SP 339H AU 98L
CON_8_SDCARD_DETECT_1CON 8 SKT SD/MMC PUSH-PUSH RA SMT 1.1MM SP 83H AU
CON_DB9
CR1220
CRYSTAL_JXS63 XTAL 24MHZ -- 30PPM 3.2X2.5MM SMD
CRYSTAL_JXS63_1 XTAL 24MHZ -- 30PPM 3.2X2.5MM SMD
CT2012_0
CT2012_0_1
CT2012_0_2
DHT11_DS18B20
DHT11_DS18B20_1
DIODE
DIODE_BI-DIR_TRIG
DIP-2X10-2P54
DIP_2X40_2P54
DLR1150_3
FE1.1S
FUSE
HDR_1X3_TH
JTAG_20PIN
LAN8720A
LED_0 LED GRN SGL 25MA 0603
LED_1 LED GRN SGL 25MA 0603
LQH32C_0
LQH32C_0_1
MAX3232EEAE
MAX3232EEAE_1
MIC_JACK
MIC_JACK_1
MIC_POM AUDIO DEVICE MIC 0.5MA 2V 38-48+/-3dB 2.2KOHM 6MM TH
MOSFET_P TRAN PMOS PWR 12V 4.3A SOT23
MP2482DN_2
MPU-6050_1
MS90C385_1
NPN TRAN NPN GEN 0.5A 45V AEC-Q101 SOT23
PIEZO_BUZZER_0
POWER_JACK_3
RJ45_HR961160C_0 CON 12 RJ45 SHLD RA SM 1.02MM SP 625H --
SIP5_2_1
SPACER_0 FASTENER, STANDOFF 4.5
参与评论
您还未登录,请先
登录
后发表或查看评论
IMX6ULL模块开发底板ALTIUM原理图库+PCB封装库+主要器件技术手册.zip
03-31
IMX6ULL模块开发底板ALTIUM原理图库+PCB封装库+主要器件技术手册,主要器件手册:
2SK3018.PDF
74LV595.PDF
74LVC1G125SE.PDF
8位1.27MM拨码开关.PDF
AP3216C.pdf
AP6236.pdf
CH340.pdf
FE1.1.pdf
FH12-40S-0.5SV.pdf
FXC1040-100M.pdf
HR911105A.pdf
HS0038B.pdf
KSZ8081RNBIA-TR.PDF
LL4148.pdf
MAX3232CSE.PDF
MAX3485.pdf
MP2144GJ.pdf
MP2482DN.pdf
MPU6050.pdf
MS90C385B.PDF
MT9700.pdf
PESD3V3L1BA.PDF
RB521S30.PDF
SII9022ACNU.PDF
SSM3J328R.pdf
TJA1042T_3.pdf
WM8960CGEFL.PDF
原理图库器件列表:
Library Component Count : 140
Name Description
----------------------------------------------------------------------------------------------------
12MHZ_1
12MHZ_1_1
2SK3018_0 TRANS MOSFET N-CH 30V .1A SOT-323
2X15P_2.0MM_DIP
2X4_1
32.768KHZ
6PIN-2_0.0-D-H
74LV595 IC REG S 8BIT TS 1.0-3.6V TSSOP16
74LVC1G125
AP3216C_0
AP6212
ATOM010130010052_HDMI_19PCON 1X19 HDMI SMT 0.5MM 249H AU --
IMX6ULL_SOM_S1_1
IND IND PWR 1UH@100KHZ 2.6A 30% SMT
JTAG_5X2_0
KSZ8081RNB_32P IC XCVR 10/100M EPHY 3.3V QFN32
LED_0 LED GRN SGL 25MA 0603
LED_0_1 LED GRN SGL 25MA 0603
LED_1 LED GRN SGL 25MA 0603
LQH32C_0
LQH32C_0_1
MAX3232EEAE
MAX3232EEAE_1
MIC_JACK
MIC_JACK_1
MIC_POM AUDIO DEVICE MIC 0.5MA 2V 38-48+/-3dB 2.2KOHM 6MM TH
MODULE_LCD_0 SUBASSEMBLY CON 1X40 FPC SMT RA + CON 1X6 FPC/FFC RA SKT + TFT DISPLAY 4.3INCH
MOSFET_P TRAN PMOS PWR 12V 4.3A SOT23
MP2144GJ_TSOT23_8P IC SYNC STEP-DOWN SW 1.2MHZ 0.6V 2A 2.5-5.5V TSOT23-8
MP2482DN_2
MPU-6050_1
MS90C385_1
NPN TRAN NPN GEN 0.5A 45V AEC-Q101 SOT23
PIEZO_BUZZER_0
POWER_JACK_3
RJ45_HR961160C_0 CON 12 RJ45 SHLD RA SM 1.02MM SP 625H --
RT9169
SII9022A IC XMTR HDMI 165MHZ 1.8/3.3V QFN72
SPACER_0 FASTENER, STANDOFF 4.5MMX3.53XM3.0X0.5 ROUND THR .635"L BRASS
SRV05-4 DIODE TVS ARRAY 12A 5V 300W SOT23_S6
SW_DIP-7_0
SW_PB_ESW_0 SW SPST MOM NO PB TACT 50mA 50V SMT
SY6280AAC
TJA10
Siemens s7-300 PLC I/O模块接线图
07-07
Siemens I/O模块接线图
python射线法判断检测点是否位于区域外接矩形内
01-20
本文实例为大家分享了python射线法判断点是否位于区域内的具体代码,供大家参考,具体内容如下
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Date : 2018-10-07 15:49:37
# @Author : Sheldon (thisisscret@qq.com)
# @Blog : 谢耳朵的派森笔记
# @Link : https://www.cnblogs.com/shld/
# @Version : 0.0.1
def isinpolygon(point,vertex_lst:list, contain_boundary=
双精度移位指令SHLD,SHRD
chupu2979的博客
06-24
1549
转:http://www.feiesoft.com/asm/05-2-053.html
双精度移位指令
此组指令有:双精度左移SHLD(Shift Left Double)和双精度右移SHRD(Shift Right Double)。它们都是具有三个操作数的指令,其指令的格式如下: ...
汇编入门指令汇总(复习篇 | 完整易懂)
weixin_58219093的博客
11-23
4040
在学习汇编前需要掌握一定的C/C++编程基础,计算机组成原理、操作系统等课程知识。
此文为复习所总结,主要介绍和总结汇编的常用指令,参考教材为《新概念汇编语言》。
汇编语言-010(循环移位ROL,ROR 、进位循环进位RCL,RCR 、有符号数溢出 、双精度移位SHLD,SHRD、SHL和ADD计算 、位运算应用)
万事亨通
12-25
4146
1 :循环移位ROL,ROR,带进位循环进位RCL,RCR
.386
.model flat,stdcall
.stack 4096
ExitProcess PROTO,dwExitCode:DWORD
.code
main PROC
;循环左移
mov al,40h ;AL = 010000000b
rol al,1 ;AL = 100000000b ,CF = 0
rol al,1 ;AL = 000000001b ,CF = 1
rol al,1 ;A
学 Win32 汇编[24] - 移位: SHL、SHR、SAL、SAR、ROL、ROR、RCL、RCR、SHLD、SHRD
weixin_33896726的博客
04-15
400
SHL、SHR、SAL、SAR: 移位指令
;SHL(Shift Left): 逻辑左移
;SHR(Shift Right): 逻辑右移
;SAL(Shift Arithmetic Left): 算术左移
;SAR(Shift Arithmetic Right): 算术右移
;其中的 SHL 和 SAL 相同, 但 SHR ...
jst1.0连接器
12-12
M0802-W JST0.8连接器规格:
额定电流:0.5A AC, DC
额定电压:30V AC ,DC
工作温度:-25C-+105C
接触电阻:20mΩmax
绝缘电阻:100MΩMIN
耐压:200v ac/minute
材料:NylON6t,UL94v-0
Wire size:awg#32-#34
UL NO:E304945
JST0.8连接器产品适用范围:LCD显示器,家电类,工控电池类,跑步机类,ATX电源类,通讯类,汽车类,灯饰类等领域。
JST0.8连接器从原材料入库到成品制造出货均严格按照SONY绿色环保标准,符合欧盟最新REACH指令法规要求!产品相继获取:美国UL SGS等国际安规证书。
【连接器的优点】
1、改善生产过程 连接器简化电子产品的装配过程。也简化了批量生产过程;
2、易于维修 如果某电子元部件失效,装有连接器时可以快速更换失效元部件;
3、便于升级 随着技术进步,装有连接器时可以更新元部件,用新的、更完善的元部件代替旧的;
4、提高设计的灵活性 使用连接器使工程师们在设计和集成新产品时,以及用元部件组成系统时,有更大的灵活性。
本公司是主要生产IDC刺破连接器,线对线连接器,线对板连接器,板对板连接器,单粒和料带式全绝缘冷压端子等系列特殊连接器生产厂商,产品主要用于LCD显示器,家电类,工控电池类,跑步机类,ATX电源类,通讯类,汽车类,灯饰类等领域,产品从入库到成品制造。出货严格按照SONNY绿色环保标准,符合欧盟最新REACH指令法规要求,产品相继获得UL CUL VDE等国际安规认证及产品专利。
主力产品有:IDC刺破类:0.8MM 1.0MM 1.5MM 2.0MM 2.5MM 2.54MM 3.96MM 5.0MM 5.08MM 空接类:1.25MM 2.0MM 1.0(4.14)MM 2.36MM 3.0MM 4.2MM 6.35MM 10.0MM空接全系列TERMINAL HOUSING HEADER.冷压端子类:110 187 205 250等系列直型旗型全绝缘尼龙冷压端子
Microsoft Library MSDN4DOS.zip
04-30
MSL 即 Microsoft Library 是 DOS 版的 "WinHelp",也就是现代版 Help Viewer 的始祖。
安装目录下有个 ini 文件,用来指定图书的路径,它即是目录。
文件来源自 http://wdl2.winworldpc.com/Abandonware%20SDKs/Microsoft Programmer's Library 1.3.7z
Microsoft Programmer's Library 1.3.iso
这就是 DOS 版的 MSDN!使用 DOSBOX 就可以运行此库。此库含一大古董级MS官方编程参考材料,主要针对 Windows 3.0 平台,真可谓之应用尽有:
MS Windows 3.0 SDK Guide to Programming
MS Windows 3.0 SDK Install. & Update Guide
MS Windows 3.0 SDK Programmer's Reference Vol. 1
MS Windows 3.0 SDK Programmer's Reference Vol. 2
MS Windows 3.0 SDK Tools
MS Windows 3.0 SDK Articles
All MS Windows 3.0 SDK Manuals
MS Windows 3.0 DDK Install. & Update Guide
MS Windows 3.0 DDK Adaptation Guide
MS Windows 3.0 DDK Virtual Device Adapt. Guide
MS Windows 3.0 DDK Printer & Font Kit
All MS Windows 3.0 DDK Manuals
MS Online User's Guide
Programming MS Windows
MS Windows Sample Code
MS KnowledgeBase - MS Windows
以及 Options => Library 菜单下提供的 9 个重要的参考资料,其中就有 C 和 MASM 这些重要的参考资料。这些是已安装的目录部分,鉴于 MASM 的重要性,特将其添加到压缩包内,免CD运行:
Windows References
OS/S References
Network References
MS-DOS References
MS Systems Journal
Hardware References
C References
MASM References
BASIC References
Pascal References
FORTUAN References
其中 C References 和 MASM References 包含:
Installing and Using MS MASM 6.0
MS MASM 6.0 Reference
MS MASM 6.0 Programmer's Guide
MS MASM 6.0 White Paper
QuickAssembler 2.01 Programmer's Guide
MS Mixed-Language Programming Guide
CodeView & Utilities User's Guide
MS Editor User's Guide
MS OnLine User's Guide
MASM Sample Code
MS KnowledgeBase - MASM
MS C 6.0 Advanced Programming Techniques
MS C 6.0 Installing and Using the P.D.S.
MS C 6.0 Reference
MS C 6.0 Run-Time Library Reference
MS C 6.0 Developer's Toolkit Reference
QuickC 2.5 Tool Kit
QuickC 2.5 C for Yourself
QuickC 2.5 Up and Running
QuickC 2.5 Update
MS Professional
REVV Motorsport:SHRD 即将到来
BeepCrypto的博客
08-11
1339
还需要注意的是,随着 MotoGP™ Ignition 完成了对 SHRD 的支持,Flow 区块链上的 SHRD 也得到了支持,Polygon 和 Flow之间的 SHRD 跨链桥也得到了支持。除了直接从游戏中获得的 SHRD 外,SHRD“捆绑”(捆绑指的是每次活动的一次性总和)是根据在活动中达到一定的等级而赢得的。SHRD 也是可以燃烧的。在这篇文章中,我们将摘录 SHRD 白皮书的部分内容,主要是 SHRD 通证在 REVV Racing 中的奖励机制和效用,以及关于供应量管理和释放的说明。...
MotoGP™ Ignition 热门卡片促销、SHRD、冠军赛等更新即将来袭!你们准备好了吗?
BeepCrypto的博客
10-26
997
在这些活动中,玩家可以测试他们的 MotoGP™ 知识,并通过竞争来赢得超棒的奖品,例如在真正的 MotoGP™ 比赛中获得一生一次的 VIP 体验。每张卡片或热门卡片都将具有由稀有度决定的相关提升值——普通卡片的提升值最低,传奇卡片的提升值最高。SHRD 的数量取决于热门卡片本身的稀有度,其中普通热门卡片提供的 SHRD 数量高于传奇热门卡片。
matlab中左移右移如何表示,汇编语言SHLD(双精度左移)和SHRD(双精度右移)指令...
weixin_34380880的博客
03-18
1222
SHLD(双精度左移)指令将目的操作数向左移动指定位数。移动形成的空位由源操作数的高位填充。源操作数不变,但是符号标志位、零标志位、辅助进位标志位、奇偶标志位和进位标志位会受影响:SHLD dest, source, count下图展示的是 SHLD 执行移动一位的过程。源操作数的最高位复制到目的操作数的最低位上。目的操作数的所有位都向左移动:SHRD(双精度右移)指令将目的操作数向右移动指定位数...
汇编学习(7)——指令汇总
lyh_lcz的博客
11-17
1134
文章目录指令汇总简单传送指令mov 传送xchg 交换加减指令add 简单加法sub 简单减法adc 带进位加法sbb 带进位减法inc 自增dec 自减neg 取反乘除指令mul 无符号乘法imul 有符号乘法div 无符号除法idiv 有符号除法符号扩展指令cbw 字节扩展为字cwd 字扩展为双字cdq 双字扩展为四字cwde 另一条字转换为双字指令扩展传送指令movsx 符号扩展传送movz...
Win32ASM学习[13]:移位指令SHL,SHR,SAL,SAR,ROL,ROR,RCL,RCR,SHLD,SHRD
bingghost
12-04
5820
一. SHL、SHR、SAL、SAR: 移位指令
----------------------------------------------------------------------------------------------------
;SHL(Shift Left): 逻辑左移
;SHR(Shift
Right): 逻辑右移
;SAL(Shift
汇编语言---移位指令
热门推荐
fivedoumi的专栏
12-27
1万+
移位指令是一组经常使用的指令,包括:算数移位、逻辑移位、双精度移位、循环移位、带进位的循环移位;
移位指令都有一个指定需要移动的二进制位数的操作数,该操作数可以是立即数,也可以是CL的值;在8086中,该操作数只能是1,但是在其后的CPU中,该立即数可以是定义域[1,31]之内的数;
一、算数移位指令:
算数移位指令分为:算数左移SAL(Shift Algebraic Left)和算数右移S
visual studio的使用
最新发布
Edward2022的博客
03-05
816
1.visual studio要加的宏命令 2.清屏操作
电路中SHLD什么意思
06-07
SHLD是"Shield"的缩写,指的是电路中的屏蔽,也称为屏蔽罩或屏蔽壳。SHLD通常是由金属材料制成的,用于包裹电路元件或线路,以防止电磁波的干扰和外界噪声的影响。在高频电路或精密电路中,屏蔽是非常重要的,因为电路的正常工作需要稳定的电压和电流信号。如果电路受到干扰或噪声,可能会导致电路性能下降或者无法正常工作。因此,SHLD屏蔽在电路设计中是非常常见的,它可以有效地保护电路免受干扰和噪声的影响。
“相关推荐”对你有帮助么?
非常没帮助
没帮助
一般
有帮助
非常有帮助
提交
SilentHunter460
CSDN认证博客专家
CSDN认证企业博客
码龄10年
暂无认证
49
原创
38万+
周排名
219万+
总排名
13万+
访问
等级
628
积分
46
粉丝
111
获赞
10
评论
566
收藏
私信
关注
热门文章
Visual Studio 设置编写C语言步骤
18628
x86汇编_JE、JNE、JCXZ 和 JECXZ 指令_笔记_34
18254
x86汇编_MUL/IMUL乘法指令_笔记52
10972
x86汇编_循环左/右移_带进位的循环左/右移_笔记48
9876
x86汇编_CMP指令_笔记_28
8536
分类专栏
汇编语言-基于X86处理器
54篇
最新评论
Visual Studio 设置编写C语言步骤
W151__693:
请问空项目位置可以改为文档吗,会影响后面的运行吗
x86汇编_DIV / IDIV除法指令_笔记53
做而论道_CS:
发现问题,应该设法解决。
编写一个 “不会溢出程序” 即可。
如果除数≠0,就没事。
x86汇编_CMP指令_笔记_28
熬夜秃秃头297:
有错误望周知,cmpl在x86是源操作数减去目标操作数
x86汇编_指令集大全_笔记_6
m0_71626135:
int INT
x86汇编_DIV / IDIV除法指令_笔记53
Wong_Manfung:
当被除数比较大,而除数比较小的时候,存放商的寄存器可能会溢出啊,楼主知道如何处理这种情况以得到一个正确的结果吗?
大家在看
bash脚本 case语句
77
【嵌入式学习记录_C语言项目】日历项目+翻页
【鸿蒙 HarmonyOS 4.0】弹性布局(Flex)
892
html—
170
springboot/java/php/node/python健身小程序【计算机毕设】
364
最新文章
x86汇编_压缩BCD码_DAA指令_DAS指令_笔记57
x86汇编_ASCII和非压缩BCD码运算_AAA / AAS_笔记56
x86汇编_BCD码_笔记55
2022年55篇
目录
目录
分类专栏
汇编语言-基于X86处理器
54篇
目录
评论
被折叠的 条评论
为什么被折叠?
到【灌水乐园】发言
查看更多评论
添加红包
祝福语
请填写红包祝福语或标题
红包数量
个
红包个数最小为10个
红包总金额
元
红包金额最低5元
余额支付
当前余额3.43元
前往充值 >
需支付:10.00元
取消
确定
下一步
知道了
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝
规则
hope_wisdom 发出的红包
实付元
使用余额支付
点击重新获取
扫码支付
钱包余额
0
抵扣说明:
1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。
余额充值
江苏省工商业联合会 江苏省总商会
江苏省工商业联合会 江苏省总商会
江苏省工商业联合会 江苏省总商会
苏商天下
首页
联工商联
工商联概况
新闻中心
民营视线
邮件登陆
电子期刊
联企业
企业风采
政策快递
政府服务直通车
银企服务
税企服务
法律问诊台
知识产权服务
联商会
商会工作
境外江苏商会
商会组织名录
联苏商
全球苏商大会
新苏商
苏商风采
全球苏商名录
English
您所在的位置:
首页 > 工商联概况 > 工商联领导
工商联概况
工商联简介
工商联领导
组织机构及职能
常委会组成人员名单
执委名单
省直属商会
境外江苏商会
工商联领导
刘 聪
江苏省工商联 主席 江苏省总商会 会长
男, 汉族,1963年4月出生,无党派,研究生学历,博士学位,教授级高级工程师。全国政协常委,全国工商联常委,江苏省党外知识分子联谊会副会长。
刘 军
江苏省工商联 常务副主席 江苏省总商会 副会长
男,汉族,1969年10月出生,中共党员,研究生学历,硕士学位。江苏省委统战部副部长、省工商联党组书记。
周海江
江苏省工商联 副主席
男,汉族,1966年2月出生,中共党员,研究生学历,博士学位。红豆集团党委书记、董事局主席。中共二十大代表,江苏省政协常委,无锡市工商联主席。
沈 彬
江苏省工商联 副主席
男,汉族,1979年9月出生,中共党员,研究生学历,硕士学位。江苏沙钢集团党委书记、董事局常务执行董事,江苏沙钢集团有限公司董事长。全国工商联副主席,江苏省人大代表,苏州市工商联副主席。
崔根良
江苏省工商联 副主席
男,汉族,1958年5月出生,中共党员,大专学历。亨通集团有限公司党委书记、董事局主席。十三届全国人大代表,中国光彩事业促进会副会长,苏州市工商联荣誉主席。
胡 明
江苏省工商联 副主席 江苏省总商会 副会长
男,汉族,1970年7月出生,民建会员,研究生学历,博士学位,正高级会计师。江苏省政协副秘书长。
李晓林
江苏省工商联 副主席 江苏省总商会 副会长
男,汉族,1974年2月出生,中共党员,大学学历,硕士学位。江苏省工商联党组成员。
郭东升
江苏省工商联 副主席 江苏省总商会 副会长
男,汉族,1966年1月出生,中共党员,大学学历。江苏省工商联党组成员。
熊 杰
江苏省工商联 副主席 江苏省总商会 副会长
男,汉族,1965年10月出生,中共党员,研究生学历,硕士学位。江苏省工商联党组成员。
吴卫东
江苏省工商联 副主席 江苏省总商会 副会长
男,汉族,1969年3月出生,中共党员,研究生学历,硕士学位。江苏省工商联党组成员。
陈建华
江苏省工商联 副主席
男,汉族,1971年3月出生,研究生学历。恒力集团有限公司董事长、总裁。
缪汉根
江苏省工商联 副主席
男,汉族,1965年8月出生,中共党员,研究生学历。盛虹控股集团有限公司党委书记、董事长。苏州市人大代表。
肖 伟
江苏省工商联 副主席
男,汉族,1959年10月出生,中共党员,研究生学历,博士学位。江苏康缘集团有限责任公司党委书记、董事长,江苏康缘药业股份有限公司董事长兼研究院院长。中国工程院院士,十三届全国人大代表,全国工商联常委。
蒋 立
江苏省工商联 副主席
男,汉族,1964年12月出生,中共党员,研究生学历,硕士学位。南京天加环境科技有限公司董事长。全国工商联常委,南京市人大代表、市工商联主席。
周 江
江苏省工商联 副主席
男,汉族,1970年7月出生,中共党员,研究生学历,硕士学位。法尔胜泓昇集团党委书记、董事长、总裁。无锡市工商联副主席。
昝圣达
江苏省工商联 副主席
男,汉族,1963年4月出生,中共党员,研究生学历,硕士学位。江苏综艺集团党委书记、董事长、总经理。十三届全国人大代表。
殷爱国
江苏省工商联 副主席
男,汉族,1975年1月出生,中共党员,研究生学历,硕士学位。江苏泰隆减速机股份有限公司总经理。泰州市工商联副主席。
蒋东良
江苏省工商联 副主席
男,汉族,1966年5月出生,中共党员,研究生学历,硕士学位。宜安控股有限公司董事长。无锡市人大代表、市总商会副会长。
周立成
江苏省工商联 副主席
男,汉族,1964年3月出生,中共党员,大专学历。新誉集团有限公司董事长。十三届全国人大代表。
徐 翔
江苏省工商联 副主席
男,汉族,1971年3月出生,中共党员,研究生学历,硕士学位。大全集团有限公司党委书记、董事长、总裁。镇江市工商联副主席。
吴培服
江苏省工商联 副主席
男,汉族,1961年10月出生,中共党员,大学学历。江苏双星彩塑新材料股份有限公司党委书记、董事长、总经理。全国工商联执委,江苏省人大代表,宿迁市工商联副主席。
孙力斌
江苏省总商会 副会长
男,汉族,1963年1月出生,大学学历,硕士学位。南京联创科技集团股份有限公司董事长。十三届全国政协委员,江苏省人大代表。
周 荣
江苏省总商会 副会长
男,汉族,1970年2月出生,无党派,研究生学历,硕士学位。苏州路之遥科技股份有限公司董事长。江苏省人大代表,苏州市政协常委、市工商联副主席。
周立宸
江苏省总商会 副会长
男,汉族,1988年8月生,中共党员,大学学历,学士学位。海澜集团有限公司党委书记、董事长。
单建华
江苏省总商会 副会长
男,汉族,1964年4月出生,中共党员,研究生学历,博士学位。苏汽集团有限公司党委书记、董事长。苏州市政协委员、市工商联副主席。
宫长义
江苏省总商会 副会长
男,满族,1964年2月出生,中共党员,研究生学历,硕士学位。中亿丰控股集团有限公司党委书记、董事长。苏州市政协委员、市总商会副会长。
袁永刚
江苏省总商会 副会长
男,汉族,1979年10月出生,中共党员,大学学历,学士学位。苏州东山精密制造股份有限公司董事长。苏州市人大代表、市工商联副主席。
缪文彬
江苏省总商会 副会长
男,汉族,1978年7月出生,中共党员,研究生学历。双良集团有限公司董事长。全国工商联执委。
薛 驰
江苏省总商会 副会长
男,汉族,1979年1月出生,民建成员,研究生学历、硕士学位。中天科技集团有限公司总裁。全国工商联执委,江苏省政协委员,南通市政协常委、市工商联副主席。
王 卫
江苏省总商会 副会长
男,汉族,1966年10月出生,无党派,研究生学历,硕士学位。南京巨鲨显示科技有限公司董事长。南京市政协常委、市工商联副主席。
王燕清
江苏省总商会 副会长
男,汉族,1966年4月出生,大学学历,学士学位。无锡先导智能装备股份有限公司董事长。
朱钰峰
江苏省总商会 副会长
男,汉族,1981年6月出生,中共党员,大学学历,学士学位。协鑫集团党委书记、副董事长、总裁。苏州市政协委员、市工商联副主席。
任晋生
江苏省总商会 副会长
男,汉族,1962年7月出生,中共党员,研究生学历,硕士学位。先声药业集团有限公司董事长兼CEO。南京市工商联副主席。
李晓冬
江苏省总商会 副会长
男,汉族,1975年11月出生,中共党员,研究生学历,硕士学位。江苏联瑞新材料股份有限公司董事长、总经理。全国工商联执委,江苏省第十四次党代会代表,连云港市工商联副主席。
李海斌
江苏省总商会 副会长
男,汉族,1969年10月出生,中共党员,大学学历。南京南海生物科技有限公司董事长。南京市人大代表、市工商联副主席。
吴 毅
江苏省总商会 副会长
男,汉族,1987年5月出生,中共党员,研究生学历,硕士学位。永卓控股有限公司总裁。苏州市工商联副主席。
张 丽
江苏省总商会 副会长
女,汉族,1963年10月出生,中共党员,研究生学历,硕士学位。南京银都奥美广告有限公司董事长。南京市工商联副主席。
陈 惠
江苏省总商会 副会长
男,汉族,1964年2月生,中共党员,研究生学历,硕士学位。江苏安惠生物科技有限公司党委书记、董事长。南通市工商联副主席。
邵丹薇
江苏省总商会 副会长
女,汉族,1982年8月出生,无党派,研究生学历,硕士学位。万帮数字能源股份有限公司董事长、总裁。十三届全国青联委员,江苏省政协委员。
钱 京
江苏省总商会 副会长
男,汉族,1983年8月出生,中共党员,研究生学历,硕士学位。恒宝股份有限公司董事长。镇江市党代会代表、市人大代表、市工商联副主席。
徐云飞
江苏省总商会 副会长
男,汉族,1987年4月出生,中共党员,研究生学历。江苏金峰水泥集团有限公司党委书记、总经理。常州市人大代表、市总商会副会长。
徐浩宇
江苏省总商会 副会长
男,汉族,1972年8月生,中共党员,研究生学历,硕士学位。扬子江药业集团有限公司党委书记、董事长、总经理。全国工商联执委,泰州市工商联副主席。
曹明拓
江苏省总商会 副会长
男,汉族,1965年11月出生,中共党员,大学学历。淮安安洁医疗股份有限公司董事长。淮安市政协委员、市工商联副主席。
梁 勤
江苏省总商会 副会长
女,汉族,1971年10月生,无党派,大学学历。扬州扬杰电子科技股份有限公司董事长。全国工商联执委,扬州市人大常委。
梁泽泉
江苏省总商会 副会长
男,汉族,1969年2月出生,中共党员,研究生学历,硕士学位。江苏仁禾中衡咨询集团党委书记、董事长。全国工商联执委,江苏省政协委员。
徐志军
江苏省工商联 秘书长
男,汉族,1978年1月出生,中共党员,研究生学历,硕士学位。江苏省工商联党组成员。
江苏省工商业联合会 江苏省总商会
网站备案序号:苏ICP备 07010100 号
江苏省工商业联合会 江苏省总商会 地址:南京建邺路168号10号楼 邮编:210004 传真:025-83329618 联系我们
纪检监察
微信矩阵 >
平台建设中......
南京工商联
无锡工商联
徐州工商联
常州工商联
苏州工商联
南通工商联
连云港工商联
淮安工商联
扬州工商联
镇江工商联
宿迁工商联
泰州工商联
江苏省工商联黄金珠宝业商会
江苏省工商联服装业商会
江苏省工商联餐业商会
江苏省工商联五金机电业商会
江苏省工商联房地产商会
江苏省工商联家具装饰业商会
江苏省工商联玩具业商会
江苏省工商联石油化工商会
江苏省工商联钢铁贸易业商会
江苏省青年企业家联合会
江苏省工商联建筑装饰装修业商会
江苏省工商联缝制设备商会
省反射保健协会
江苏省工商联省汽摩配用品商会
江苏省温州商会
江苏省MBA企业家联谊会
江苏省工商联体育产业商会
江苏省工商联商业行业商会
江苏省特产商会
shld,shrd怎么用,功能是什么?-CSDN社区
,shrd怎么用,功能是什么?-CSDN社区
社区
汇编语言 帖子详情 shld,shrd怎么用,功能是什么? sunwen_chen 2002-07-15 02:50:31 rt
...全文
431 2 打赏 收藏 shld,shrd怎么用,功能是什么? rt 复制链接
扫一扫 分享 转发到动态 举报
写回复 配置赞助广告取 消
确 定
用AI写文章 2 条回复 切换为时间正序 请发表友善的回复… 发表回复 打赏红包 需支付: 0.00 元 取 消 确 定 wowocock 2002-07-15 打赏举报 回复 看书吧,80X86汇编语言程序设计教程,或MASM32的帮助,就是上面所说的。 woshiwo 2002-07-15 打赏举报 回复 SHLD/SHRD - Double Precision Shift (386+)
Usage: SHLD dest,src,count
SHRD dest,src,count
Modifies Flags: CF PF SF ZF (OF,AF undefined)
SHLD shifts "dest" to the left "count" times and the bit positions opened are filled with the most significant bits of "src". SHRD shifts "dest" to the right "count" times and the bit positions opened are filled with the least significant bits of the second operand. Only the 5 lower bits of "count" are used.
Clocks
operands 286 386 486 Size Bytes
reg16,reg16,immed8 3 2 4
reg32,reg32,immed8 3 2 4
mem16,reg16,immed8 7 3 6
mem32,reg32,immed8 7 3 6
reg16,reg16,CL 3 3 3
reg32,reg32,CL 3 3 3
mem16,reg16,CL 7 4 5
mem32,reg32,CL 7 4 5
显控PLC移位指令说明.pdf 移位指令包括:字左移 SHL、 双字左移 SHLD、 字右移 SHR、 双字右移 SHRD、 位左移 SHLB、 位右移 SHRB、 循环字左移 ROL、 循环双字左移 ROLD、 循环字右移 ROR、循环双字右移 RORD Microsoft Library MSDN4DOS.zip MSL 即 Microsoft Library 是 DOS 版的 "WinHelp",也就是现代版 Help Viewer 的始祖。
安装目录下有个 ini 文件,用来指定图书的路径,它即是目录。
文件来源自 http://wdl2.winworldpc.com/Abandonware%20SDKs/Microsoft Programmer's Library 1.3.7z
Microsoft Programmer's Library 1.3.iso
这就是 DOS 版的 MSDN!使用 DOSBOX 就可以运行此库。此库含一大古董级MS官方编程参考材料,主要针对 Windows 3.0 平台,真可谓之应用尽有:
MS Windows 3.0 SDK Guide to Programming
MS Windows 3.0 SDK Install. & Update Guide
MS Windows 3.0 SDK Programmer's Reference Vol. 1
MS Windows 3.0 SDK Programmer's Reference Vol. 2
MS Windows 3.0 SDK Tools
MS Windows 3.0 SDK Articles
All MS Windows 3.0 SDK Manuals
MS Windows 3.0 DDK Install. & Update Guide
MS Windows 3.0 DDK Adaptation Guide
MS Windows 3.0 DDK Virtual Device Adapt. Guide
MS Windows 3.0 DDK Printer & Font Kit
All MS Windows 3.0 DDK Manuals
MS Online User's Guide
Programming MS Windows
MS Windows Sample Code
MS KnowledgeBase - MS Windows
以及 Options => Library 菜单下提供的 9 个重要的参考资料,其中就有 C 和 MASM 这些重要的参考资料。这些是已安装的目录部分,鉴于 MASM 的重要性,特将其添加到压缩包内,免CD运行:
Windows References
OS/S References
Network References
MS-DOS References
MS Systems Journal
Hardware References
C References
MASM References
BASIC References
Pascal References
FORTUAN References
其中 C References 和 MASM References 包含:
Installing and Using MS MASM 6.0
MS MASM 6.0 Reference
MS MASM 6.0 Programmer's Guide
MS MASM 6.0 White Paper
QuickAssembler 2.01 Programmer's Guide
MS Mixed-Language Programming Guide
CodeView & Utilities User's Guide
MS Editor User's Guide
MS OnLine User's Guide
MASM Sample Code
MS KnowledgeBase - MASM
MS C 6.0 Advanced Programming Techniques
MS C 6.0 Installing and Using the P.D.S.
MS C 6.0 Reference
MS C 6.0 Run-Time Library Reference
MS C 6.0 Developer's Toolkit Reference
QuickC 2.5 Tool Kit
QuickC 2.5 C for Yourself
QuickC 2.5 Up and Running
QuickC 2.5 Update
MS Professional The Art of Assembly Language Programming You are visitor as of October 17, 1996.The Art of Assembly Language ProgrammingForward Why Would Anyone Learn This Stuff?1 What's Wrong With Assembly Language2 What's Right With Assembly Language?3 Organization of This Text and Pedagogical Concerns4 Obtaining Program Source Listings and Other Materials in This TextSection One: Machine OrganizationArt of Assembly Language: Chapter OneChapter One - Data Representation1.0 - Chapter Overview1.1 - Numbering Systems1.1.1 - A Review of the Decimal System1.1.2 - The Binary Numbering System1.1.3 - Binary Formats1.2 - Data Organization1.2.1 - Bits1.2.2 - Nibbles1.2.3 - Bytes1.2.4 - Words1.2.5 - Double Words1.3 - The Hexadecimal Numbering System1.4 - Arithmetic Operations on Binary and Hexadecimal Numbers1.5 - Logical Operations on Bits1.6 - Logical Operations on Binary Numbers and Bit Strings1.7 - Signed and Unsigned Numbers1.8 - Sign and Zero Extension1.9 - Shifts and Rotates1.10 - Bit Fields and Packed Data1.11 - The ASCII Character Set1.12 Summary1.13 Laboratory Exercises1.13.1 Installing the Software1.13.2 Data Conversion Exercises1.13.3 Logical Operations Exercises1.13.4 Sign and Zero Extension Exercises1.13.5 Packed Data Exercises1.14 Questions1.15 Programming ProjectsChapter Two - Boolean Algebra2.0 - Chapter Overview2.1 - Boolean Algebra2.2 - Boolean Functions and Truth Tables2.3 - Algebraic Manipulation of Boolean Expressions2.4 - Canonical Forms2.5 - Simplification of Boolean Functions2.6 - What Does This Have To Do With Computers, Anyway?2.6.1 - Correspondence Between Electronic Circuits and Boolean Functions2.6.2 - Combinatorial Circuits2.6.3 - Sequential and Clocked Logic2.7 - Okay, What Does It Have To Do With Programming, Then?2.8 - Generic Boolean Functions2.9 Laboratory Exercises< 双精度移位指令SHLD,SHRD 转:http://www.feiesoft.com/asm/05-2-053.html
双精度移位指令
此组指令有:双精度左移SHLD(Shift Left Double)和双精度右移SHRD(Shift Right Double)。它们都是具有三个操作数的指令,其指令的格式如下: ... x86汇编_SHLD/SHRD双精度左右移指令_笔记49 SHLD(双精度左移)指令将目的操作数向左移动指定位数。移动形成的空位由源操作数的高位填充。SHRD(双精度右移)指令将目的操作数向右移动指定位数。移动形成的空位由源操作数的低位填充。源操作数不变,但是符号标志位、零标志位、辅助进位标志位、奇偶标志位和进位标志位会受影响。.........
汇编语言
21,448
社区成员
41,604
社区内容
发帖 与我相关 我的任务 汇编语言 汇编语言(Assembly Language)是任何一种用于电子计算机、微处理器、微控制器或其他可编程器件的低级语言,亦称为符号语言。 复制链接
扫一扫 分享 确定 社区描述 汇编语言(Assembly Language)是任何一种用于电子计算机、微处理器、微控制器或其他可编程器件的低级语言,亦称为符号语言。 社区管理员
加入社区
获取链接或二维码
近7日
近30日
至今
加载中
查看更多榜单
社区公告
暂无公告 试试用AI创作助手写篇文章吧 + 用AI写文章
GitHub - open-power-workgroup/Hospital: OpenPower工作组收集汇总的医院开放数据
GitHub - open-power-workgroup/Hospital: OpenPower工作组收集汇总的医院开放数据
Skip to content
Toggle navigation
Sign in
Product
Actions
Automate any workflow
Packages
Host and manage packages
Security
Find and fix vulnerabilities
Codespaces
Instant dev environments
Copilot
Write better code with AI
Code review
Manage code changes
Issues
Plan and track work
Discussions
Collaborate outside of code
Explore
All features
Documentation
GitHub Skills
Blog
Solutions
For
Enterprise
Teams
Startups
Education
By Solution
CI/CD & Automation
DevOps
DevSecOps
Resources
Learning Pathways
White papers, Ebooks, Webinars
Customer Stories
Partners
Open Source
GitHub Sponsors
Fund open source developers
The ReadME Project
GitHub community articles
Repositories
Topics
Trending
Collections
Pricing
Search or jump to...
Search code, repositories, users, issues, pull requests...
Search
Clear
Search syntax tips
Provide feedback
We read every piece of feedback, and take your input very seriously.
Include my email address so I can be contacted
Cancel
Submit feedback
Saved searches
Use saved searches to filter your results more quickly
Name
Query
To see all available qualifiers, see our documentation.
Cancel
Create saved search
Sign in
Sign up
You signed in with another tab or window. Reload to refresh your session.
You signed out in another tab or window. Reload to refresh your session.
You switched accounts on another tab or window. Reload to refresh your session.
Dismiss alert
open-power-workgroup
/
Hospital
Public
Notifications
Fork
1k
Star
6.7k
OpenPower工作组收集汇总的医院开放数据
open-power-workgroup.github.io/hospital
6.7k
stars
1k
forks
Branches
Tags
Activity
Star
Notifications
Code
Issues
43
Pull requests
0
Actions
Projects
0
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Security
Insights
open-power-workgroup/Hospital
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
masterBranchesTagsGo to fileCodeFolders and filesNameNameLast commit messageLast commit dateLatest commit History696 Commits.github.github articlearticle datadata resourceresource submitHospitalsubmitHospital .gitignore.gitignore .gitmodules.gitmodules .travis.yml.travis.yml README.mdREADME.md README_en.mdREADME_en.md generate.pygenerate.py guide.mdguide.md open_data_usage_license.mdopen_data_usage_license.md package.jsonpackage.json publish.shpublish.sh requirements.txtrequirements.txt update.pyupdate.py View all filesRepository files navigationREADMELicenseReadme (English)
这是什么?
本项目的意图是收集汇总与国内一些医疗机构有关的开放数据,供广大寻医问药的患者及家属参考。
本项目由Open Power小组共同维护。Open Power小组是一个由志愿者组成的工作组,我们深知自己的能力有限,因此我们只能分享我们当前所知的信息,确保我们没有捏造信息,并努力提高信息的可信度。至于这些信息应该如何指导行动,我们保持缄默。
本项目所有信息基于OPW开放数据使用授权协议发布。
请进入数据发布网站获取医院信息开放数据。
医院入围标准
本项目的第一批医院名单来源于凤凰网医院名单,后根据社区热心人的贡献汇总而成。进入这份名单的医院符合以下三个条件中的至少一个:
曾经投放百度竞价广告
曾经被媒体报道过医疗欺诈事件
与莆田系存在直接关系
Open Power小组会以这三个入选条件作为指导原则,明确更详细的审核标准和流程。由于信息确认工作十分复杂,工作量很大,希望所有热心人积极提供信息或线索。
贡献者指南
本项目需要更多的热心人、尤其是有技术背景的热心人加入贡献核心架构。如果有兴趣加入,请在Issues里面申请。
提交贡献之前,请先阅读贡献者指南。
特别申明
如果您对本项目提供的信息有任何异议,请第一时间在Issues里面提出。如情况属实的,我们会第一时间予以删除,并同时向您表示歉意。
本项目最初的维护者@langhua9527,由于个人原因已经退出本项目的维护。目前本项目由Open Power团队负责管理,管理员是@fakeforreg和@xokctah。
关联项目
名称
描述
Stars
Forks
PTHospital.chrome
Chrome浏览器插件
hospital-viz
基于凤凰网数据的医院地图
iquery
一个可以通过命令行查询莆田医院的工具
滚蛋吧!莆田系
在web上直观列出全国的莆田系医院
野鸡医院
iOS原生应用(Go语言+Ruby语言实现),大陆常见野鸡医院查询
GetHosp
一个有情怀的医院查询插件
Putian_Warning
Putian Warning基于GreaseMonkey的扩展脚本
莆田系黑心医院名单插件
一个Chrome插件,位于谷歌应用商店
piggyreader
饥猪阅读(Piggy Reader),在用户浏览时加以提示
chromeExt
一个Chrome插件
BlackHospital
Android原生应用,可以定位到用户所在城市
PTXNotification
一个Chrome插件
莆田系凉了吗
查询莆田系医院的微信小程序
版本1.2beta
目录
北京
天津
河北
石家庄
唐山
邯郸
保定
廊坊
山西
太原
大同
阳泉
长治
晋城
晋中
运城
临汾
内蒙古
呼和浩特
包头
乌海
辽宁
沈阳
大连
吉林
长春
四平
延边
黑龙江
哈尔滨
上海
江苏
南京
无锡
徐州
常州
苏州
南通
淮安
盐城
扬州
泰州
宿迁
浙江
杭州
宁波
温州
嘉兴
湖州
金华
舟山
台州
丽水
安徽
合肥
芜湖
蚌埠
马鞍山
淮北
亳州
福建
福州
厦门
莆田
泉州
龙岩
江西
南昌
萍乡
九江
赣州
吉安
上饶
山东
济南
青岛
淄博
烟台
潍坊
威海
德州
聊城
河南
郑州
洛阳
平顶山
安阳
新乡
许昌
漯河
信阳
湖北
武汉
不孕症
妇科/产科
男科
综合医院
整形科
专科
三甲医院外包科室
黄石
襄阳
荆州
黄冈
湖南
长沙
湘潭
衡阳
郴州
娄底
广东
广州
韶关
深圳
珠海
汕头
佛山
江门
肇庆
惠州
河源
东莞
中山
广西
南宁
陈氏家族
詹氏家族
林氏家族
黄氏家族
柳州
桂林
海南
海口
重庆
四川
成都
泸州
绵阳
乐山
南充
雅安
资阳
凉山
贵州
贵阳
遵义
安顺
毕节
铜仁
云南
昆明
曲靖
玉溪
保山
昭通
丽江
普洱
临沧
文山
西藏
拉萨
陕西
西安
商洛
青海
西宁
宁夏
银川
新疆
伊犁
乌鲁木齐
甘肃
兰州
网站
北京
武警北京总队医院
地址 北京市朝阳区东三里屯一号院
证据:
新闻报道: 在1月“血友病贴吧事件”中,当时媒体对部分已售出的疾病贴吧进行调查,其中承包甲亢吧的是所谓“武警北京总队医院中医甲状腺科”。
武警北京市总队第二医院
地址 北京市西城区月坛北街丁3号
证据:
新闻报道: 在朋友圈热门文章《一个死在百度和部队医院之手的年轻人》中,作者通过检索自称“武警北京总队二院官网”的域名注册信息,发现魏则西曾经就医的武警北京总队二院肿瘤生物中心,其背景是莆田系。
北京美莱医疗美容医院(所属为:北京美莱医疗美容医院有限公司-> 美莱医疗美容(连锁)医院集团 http://www.mylike.com/)
电话 010-56935111
网址 http://www.bjmylike.com/
地址 北京市朝阳区朝阳门外大街227号
北京俪人女子医院
北京北海医院
北京前海股骨头医院
北京市慧慈医院
北京五洲女子医院
北京圣保罗男子医院
北京建国医院
北京天伦不孕不育医院
北京玛丽妇婴医院
北京美联臣医疗美容医院
北京慧中医院
北京阳光丽人妇科医院
北京恒安中医院
北京京城皮肤病医院
北京京北医院
北京京顺医院
电话 010-69423999
网址 http://www.bjjsyy.com/
北京瑞京糖尿病医院
北京众安康中医骨科
北京麦瑞骨科医院
北京健宫医院
北京华医中西医结合皮肤病医院
北京德胜门中医院
北京军都医院
北京慈康医院
北京艾丽斯妇科医院
网址 http://www.fuke120.cn/
证据:
用户反馈 亲测:医院收费不透明,治疗过程中各种乱开检查的单子,手术价格为普通医院价格10倍左右,最后医院连检查的结果都不会给你。有类似的受害者:http://money.163.com/16/0329/09/BJAIJCRK00253B0H.html , http://ask.yaolan.com/question/15112409310913796432.html
北京新兴医院
网址 3g.bjxxyy.com/index.html
天津
天津坤如玛丽医院
电话 022-28285031
网址 http://www.tjkrml.com
天津华北医院
电话 022-24418755
网址 http://www.huabeihp.com
天津华厦医院
电话 022-28230188
网址 http://www.huaxiahp.com
天津丽人女子医院
电话 022-24156655
网址
http://www.lr16.com
http://www.tjlrfk.com
http://lr16.tj.aimeicity.com
天津华山医院
电话 022-58815889
网址
http://www.tjhsfk.com
http://www.bevall.com
天津怡泰生殖专科医院
电话 022-27113333
网址 暂缺
天津现代女子医院
电话 022-24459999
网址 http://www.022nz.com
天津怡泰医院
电话 022-27113333
天津乐园医院
电话 022-28278888
网址 http://www.28278888.com
天津长庚耳鼻喉医院
电话 400-6703120
网址 http://www.tjcg120.com
天津阿波罗医院
电话 022-28111999
网址 http://www.nkyy022.com/
地址 天津市南开区黄河道38号
天津美莱医学美容医院
电话 022-24239999
地址 天津市河东区华昌道80-92号(裕阳大厦底商)
天津254医院/解放军254医院 部分科室
电话 022-26220266
地址 天津市河北区黄纬路60号
网址 http://www.yafrlaowuw.com/
解放军464医院/天津男科医院 部分科室(部分男科吧)
电话 400-022-0995
地址 天津市红旗南路600号
天津解放军第272医院
河北
石家庄
河北东方中西医结合医院
石家庄美联臣医疗美容医院
唐山
唐山京城皮肤病医院
唐山女子医院
唐山红十字医院
邯郸
邯郸仁爱妇科医院
保定
保定京津医院
保定世纪协和医院
保定长安医院
保定现代女子医院
保定白癜风医院
廊坊
廊坊万福医院
廊坊世纪协和医院
山西
太原
山西现代妇产医院
山西民生医院
武警山西总队医院
山西长庚耳鼻喉医院
太原糖尿病专科医院
太原新医医院
太原益民中医院
太原白癜风医院
大同
大同新时代妇科医院
阳泉
山西阳泉东方生殖医院
长治
长治女子医院
晋城
晋城现代女子医院
晋城生殖医院
晋中
山西新阳光妇科医院
运城
运城禹都人民医院
临汾
临汾现代女子医院
内蒙古
呼和浩特
内蒙古天骄医院
呼和浩特五洲女子医院
包头
包头现代女子妇产医院
乌海
乌海现代医院
辽宁
沈阳
沈阳北陵医院
电话 024-82235899
沈阳曙光男科医院
武警辽宁省总队医院
电话 024-86526638
解放军沈阳463医院希美整形美容
大连
大连长城妇科医院
电话 400-0078120
网址 http://www.39568888.com
大连新世纪医院
电话 0411-86506565
大连阳光医院
电话 0411-84302222
吉林
长春
长春同济医院
吉林总队医院
长春长庚耳鼻喉医院
长春阳光女子医院
长春阳光口腔医院
吉林创作医院
四平
四平阳光医院
延边
延吉博生现代妇科医院
黑龙江
哈尔滨
黑龙江玛丽亚妇产医院
黑龙江东北医院
黑龙江和平医院
黑龙江和美妇产医院
哈尔滨市生殖保健中心院
哈尔滨欧亚男科医院
黑龙江长庚耳鼻喉医院
黑龙江阳光女子医院
黑龙江省武警黄金医院妇科
上海
上海市闵行区中医医院(原上海莱茵医院)
电话 021-51876888
网址 http://www.tcmmh.com
地址 上海市闵行区合川路3071号
证据:
该院页面信息显示:上海市闵行区卫生局、上海中医药大学附属龙华医院、西红柿投资控股有限公司合作共建闵行区中医医院,其中上海西红柿投资控股集团董事、执行总裁为林一平
全国企业信用信息系统显示: 上海西红柿投资控股有限公司的法定代表人是陈金秀,自然人股东包括:李爱兰和陈金秀。
谷歌缓存页面显示(这是谷歌对上海市莆田商会网页的缓存),陈金秀是上海市莆田商会名誉会长,籍贯:秀屿区东庄镇
通过“上海市企业注册登记信息公开”地址查询显示,上海莱茵医院有限公司于今年四月二十八日注销。该公司法定代表人为林一平。
上海华美医疗美容医院
电话:
021-58856655
400-8806580
网址 http://www.shhuamei.cn
地址 上海市市辖区浦东新区源深路155号
相关资料:
工信部备案信息,主办单位:上海华美医疗美容医院有限公司;网站负责人:蔡智俊;备案许可证号:沪ICP备13030768号-1
上海企业信息登记注册公开查询信息,上海华美医疗美容医院有限公司法定代表人:雷启龙;自然人股东:洪玲燕,黄志佳
黄志佳相关信息:莆田青年发展促进会(珠海)第三次交流会顺利召开,(中国)健康产业总会上海分会筹备大会在沪胜利召开 - 上海市莆田商会。 (请进一步求证。)
上海万众医院
电话 400-8892218
网址 http://www.wz120.cc/
地址 上海市徐汇区吴中路2号
证据:
全国企业信用信息公示系统显示上海万众医院有限公司法定代表人:占阳珊
占阳珊为莆田健康产业总商会常务副会长,上海市福建商会理事。确认参考:新华网微博,上海市莆田商会网页谷歌缓存, 新闻“同济大学与莆系医疗合作共建附属医院”。
用户反馈 患者家属
用户反馈 Google缓存
用户反馈 天涯网友
用户反馈 Google缓存
上海安真医院
电话 021-57711006
地址 上海市松江区人民南路39号
证据:
用户反馈 天涯广告
用户反馈 Google缓存
上海福华医院
电话 021-51961999
地址 上海市浦东新区惠南镇城南路98号
上海玛丽女子医院
电话 021-69726299
网址
http://www.mary120.cn/
http://www.shmary.cn/
地址 上海市青浦区公园路380号
上海真爱女子(整形美容)医院
电话:
021-62269000
400-880-5522
4006-006-530
网址:
http://www.shzhenai.com/[官网变了]
http://shzhenai.sh.aimeicity.com/
http://www.shzazx.com/
地址 上海市长宁区延安西路934号
证据:
全国企业信用信息公示系统(上海)查询显示, 自然人股东包括:林国瑞,林国彪,林宗金,苏荣华,上海亿豪医疗器械有限公司(法定代表人:林国雄-莆田(中国)健康产业总会副理事长)。公司名称:上海真爱医院有限公司;公司地址:上海市长宁区延安西路934号
林宗金为莆田系参见广东省福建莆田商会网页信息:广东省福建莆田商会名誉会长、南京市莆田商会会长、江苏华世伟业投资股份有限公司董事长。香港华世伟业集团、江苏华世伟业投资股份有限公司是一家以医疗产业、高新产业投资为主的大中型现代化企业集团。
林国瑞为莆田系参见新闻“林国瑞、陈国兴受邀参加法国领事馆国庆晚宴”: 莆田(中国)健康产业总会常务副会长、时光-施尔美集团董事长
林国彪为莆田系参见新闻"莆田(中国)健康产业总会成立": 常务副组长:林国彪。
用户反馈 患者1
用户反馈 Google缓存
上海沪申五官科医院
电话 021-54305338
网址 http://www.hs5g.com
上海远大心胸医院(号称上海心脏病医院)
电话 021-64829999
网址 http://www.yodak.net/
地址 上海市徐汇区龙漕路218号
上海仁爱医院
电话 021-64688888
网址:
http://www.renai.cn/
http://en.renai.cn/
地址 上海市徐汇区漕溪路133号(近万体馆)
上海天大医疗美容医院
电话 021 -64080808
网址
http://www.tida.sh.cn
http://www.tida120.com
上海五官科医院
(注:这个隶属深圳博爱医疗集团,非汾阳路的复旦大学附属眼耳鼻喉科医院/上海市五官科医院)(复旦大学附属眼耳鼻喉科医院/上海市五官科医院是卫计委直属公立三甲医院,此条目仅一字之差,容易混淆。目前百度搜索上海五官科医院也是导向到复旦大学附属眼耳鼻喉科医院/上海市五官科医院) 院方申明 [这个资料不好找]
网址 http://www.er021.com
相关资料 百度搜索关键词"上海五官科医院 上海沪申五官科医院",可以直接看到搜索结果把两者混淆
上海博爱医院(是否属于莆田系存在争议,请继续求证)
电话
021-64333999
021-6431 2600
网址 http://boaihospital.com/
地址 上海市淮海中路1590号
证据:
这个网页是《瞭望东方周刊》2007年第4期(电子杂志)的报道《“莆田系”败走上海博爱医院》,报道记者为李蔚和朱国栋,文章提到,上海博爱医院是上海第一家民营医院,2004年莆田系曾入股上海博爱医院,当时莆田人的股份是中骏20%,美迪亚20%,澳信20%,这三家医疗投资集团的掌门人分别为莆田游医大佬詹玉鹏、詹国团和林宗金。2006年3月,上海市卫生局会同市工商局,药监、物价等部门对全市医疗机构的专项检查中,上海博爱医院成为问题最多的医院。违规项目包括“使用‘毁灭癌症细胞、提高存活率’等明显违规用于;门口则擅自挂有‘瑞士羊胚胎素注射亚洲服务中心’等招牌;擅自实行医保、自费病人收费‘双轨制’,部分收费项目自费病人要高出医保病人达三四倍,且未明码标价。”王家屏告诉《瞭望东方周刊》记者,“不久之后,博爱医院就被取消了医保资格,过了一段时间莆田系多数股份黯然推出博爱医院。”
该医院网站主页右边红色标志“博爱公告”声明自己不是莆田系医院。
2015年健康权纠纷案
工信部信息备案查询参考
帖子“绝对原创:看看上海博爱医院的黑幕!”,该帖子认为医院鲸吞离休干部医疗费,乱收费,乱宰病人尤其是离休干部。并声明"保证所提供的情况是真实的,供市领导调研,决策,既要保证离休干部的医疗要求又要杜绝医疗资金的浪费与被侵吞,制订有效的管理规章。"
上海新虹桥医院(号称上海男科医院) [没有找到,可能是上海九龙男子医院]
电话 021-62092255
网址 http://www.xinhongqiao.cn/
地址 上海长宁区虹古路85号(虹桥开发区西侧)
上海虹桥医院(所属上海闵行虹桥医院有限公司)
电话 021-64659999
网址 http://www.shhqyy.com
地址 上海市闵行区虹梅路2181号(近吴中路)
上海九龙男子医院
电话
021-52739067
021-52732699
网址
http://www.long120.cn
http://www.shjlnzyy.com/
地址 上海市长宁区中山西路333号(近中山公园)
上海城市女子医院 [没有找到,可能和上海南浦妇科医院是一家医院,可能]
电话 021-51092999
网址 http://www.28567.hos.999120.net/
地址 上海市普陀区曹安路1352号
上海西郊骨科医院
电话
021-52208866
136-5172-4016
网址
http://www.sdaj.net/
http://www.gb5u.com/
http://www.gkyy120.com/
http://www.cqgkzj.com/
地址 上海市长宁区剑河路595号4号楼
上海真美妇科医院
电话 021-55099999
网址
http://www.giivi.com/
http://www.zdia.net/
地址 上海市杨浦区宁国路313弄-4号
上海南浦妇科医院
电话
021-58891199
158-2160-8827
网址
http://www.nanpuyy.com/
http://www.brandv.org/
http://www.fyjx.org/
http://www.fdfzxy.org/
http://www.acgene.org/
http://www.nanpu120.com/
http://m.up54.com/
http://www.rzjfk.com/
http://yyk.qqyy.com/h14964/
地址 上海市浦东新区浦东南路2250号(南浦大桥下)
相关资料:
这是百度和谷歌发现网址最多的医院
最后一个网址http://yyk.qqyy.com/h14964/ 所属全球医院网http://www.qqyy.com/ 工信部备案信息为闽ICP备09014062号, 2014-11-06, 福州网健天下网络科技有限公司,
谷歌搜索关键词: 医院 site:*.qqyy.com 可以发现很多在这个名单上出现的医院,可以为进一步搜索参考。
天涯帖子 上海南浦妇科医院的受害者 该怎么维权?
网址http://www.pmref.com/ 将自己称为上海松江区妇科医院,而电话仍然是021-58891199,并且在这个网页http://www.pmref.com/yyjs/51.html 显示为南浦妇科医院
上海健桥医院
电话 021-56659999
网址 http://www.jqbyby.com
上海长江医院
电话 021-65022556
网址 http://www.cjhospital.com
解放军411医院
电话 400-0789411
网址 http://www.sh411wgk.com
上海阳光中医医院 [没有找到]
上海英港泌尿外科医院
上海阿波罗男子医院
上海玫瑰女子医院
上海康新医院
上海圣爱医院
上海同德医院
上海安平医院
江东泌尿外科医院
上海九州泌尿医院
上海青城医院
上海博大医院
上海中亚医院
上海时光整形外科医院
上海市黄浦区中西医结合医院
上海曙康口腔医院
上海市浦东新区传染病医院
上海中医药大学附属曙光医院(这个医院的整形科是莆田系的。时光整形被承包。本体不是莆田系的)
浦东肝病专科医院
众仁曙光医疗保健中心
上海市松江区方塔中医医院
上海嘉华医院
上海中骏医学科学研究所
上海天伦医院(注:隶属上海明爱医疗集团)
电话
021-65667633
021-65259999
+9864006660102
021-55158829
网址
http://www.shtl120.com/
http://www.sh-byby.org/
http://www.shtlyy.com/
http://www.shtianlun.org/
http://www.tianlun100.com/
地址 上海市虹口区凉城路545号
上海国正医院(注:隶属上海明爱医疗集团) [没有找到]
电话
021-58009999
18801856118
网址
http://23759.zhaopin.job120.com/
http://shgzyy.cn.b2b168.com/
地址 上海市南汇区惠南镇人民西路99号
上海美莱医疗美容医院
电话 021-2223 5555
网址 http://www.shmylike.com/
地址 上海长宁区延安西路789号美莱大厦, 曹家堰路88号
证据:
所属为:美莱医疗美容(连锁)医院集团 http://www.mylike.com/,详见文末"美莱医疗美容(连锁)医院集团"为莆田系信息。
上海东方丽人医疗美容医院
电话
400-630-6997
1379444015
网址 http://www.4006306997.com/index.html
地址 上海市长宁区安龙路835号
相关资料:
工信部备案信息: 闽ICP备15019526号,主办单位性质:个人;主办单位名称/网站负责人:胡森森; 网站名称:麦凯乐网(和网站显示名称严重不符)
江苏
南京
江苏施尔美整形美容医院
地址:南京市秦淮区太平南路389号101、201、301室
南京曙光医院
地址:南京市中华门外正学路1号
南京江宁博爱医院
地址:南京市江宁区东山镇同夏路19号
南京市江宁区众彩门诊部
南京世纪现代妇产医院
地址:南京市江宁区天元东路358号
南京建国男科医院
地址:南京市长乐路238号
南京康豪妇科
南京阳光肿瘤医院
南京港龙医院
地址:南京市秦淮区苜蓿园大街48号
454医院植发科
南京医科二附院协作医院
天长现代妇产医院
南京医科大学附属友谊整形外科医院
地址:南京市汉中路146号
南京解放军81医院
南京454医院妇产科
南京蓝十字脑科医院
南京迈皋桥医院
南京东院门诊部
南京华美整形美容医院
地址:南京珠江路655号
南京空军机关医院神经科
南京军区机关医院妇科
南京长江医院
地址:南京市鼓楼区钟阜路新门口18号
南京长海医院
地址:南京市浦口区宁六路38号
南京美迪亚医院
南京亚韩整形美容医院
地址:南京市江宁区金箔路女人街国际影城旁
南京仁品耳鼻喉专科医院
地址:南京市中华路528号
南京邦德骨科医院
地址:南京市玄武区龙蟠中路97号
南京肛泰中医医院
地址:建邺区黄山路2号
网址:http://www.njgtyy.com/
南京维多利亚国际整形美容医院
地址:南京市秦淮区虎踞南路100号1、2层
南京华世佳宝妇产医院
地址:南京市建邺区文体西路9号
南京中天皮肤病医院
南京恒大中医院
南京新协和医院
南京天伦医院
南京玛丽妇产医院
地址:南京市雨花台区雨花东路2号
南京华西妇科医院
南京新城医院
南京建国医院
地址:南京市长乐路238号
南京雨花男科医院
南京科大医院
南京和燕医院
半山医院妇科
南京高淳博爱医院
地址:高淳区镇兴路73号
溧水瑞丽妇产医院
南京华夏妇科
南京仁济妇科
南京广济医院
南京江宁友爱医院
南京连天美美容医院
地址:南京市鼓楼区新模范马路46-1
南京韩辰整形
南京康美美容医疗医院
地址:南京市秦淮区洪武路288号
南京奇致医疗美容医院
南京华肤医院
南京华夏白癜风医院
南京现代长城医院
南京保肤堂皮肤病研究所
南京延龄白癜风医院
南京康贝佳口腔医院
南京金伯利口腔
南京数字口腔医院
南京雅度齿科
南京曙光肛肠专业医院
地址:南京市中华门外正学路1号
南京仁品耳鼻喉科医院
地址:南京市中华路528号
南京正大耳鼻喉科医院
南京鼓楼新生门诊
南京华都医学研究院
溧水中山医院
尔康强制性脊柱炎研究所
南京龙蟠结石医院
南京远大医学研究所
南京万厚肝病医院
南京和平
无锡
无锡玛丽亚医院
无锡嘉仕恒信医院
无锡南站医院
无锡虹桥医院
江阴东方女子医院
宜兴武警医院
江阴九龙泌尿外科医院
无锡新区医院
江阴红房子医院
江阴朝阳男科医院
徐州
徐州新华医院
徐州复兴眼科医院
徐州国康中医院
徐州九龙妇产医院
新沂市博爱医院
徐州瑞博医院
徐州百汇医院
徐州京城皮肤病医院
常州
武进红房子医院
苏州
苏州东吴医院
电话 0512-68120120
网址 http://www.szdwyy.com
苏州华美美莱整形医院
电话 400-8816499
网址 http://www.mlmryy.com
昆山虹桥医院
电话 0512-57399999
网址 http://www.ksyy120.com
常熟东方妇科医院
电话 0512-51531111
网址 http://www.csfk.net
常熟仁爱医院
昆山阳光医院
苏州圣爱医院
电话 0512-68078047
网址 http://www.szsayy.com
苏州新医科
张家港朝阳五官科医院
电话
0512-58983999
400-022-3272
网址 http://www.cy5g.com
地址 张家港市杨舍镇港城大道198号
南通
江苏海安华山医院
南通和美家妇产科医院
南通长城医院
启东市中医院
电话 0513-83212540
网址 http://www.qdszyy.com/
地址 江苏省南通市启东市紫薇中路458号
淮安
江苏淮安中山医院
淮安生殖医院
盐城
盐城协和康复医院
扬州
扬州仁爱医院
泰州
江苏泰州红房子医院
泰州市海陵医院
泰州海陵女子医院
泰兴协和医院
靖江丽人医院
电话 0523-84988820
Q Q 180899999
网址
http://www.tzlryy.net
http://www.tzlryy.com
地址 靖江市江平路360号(交警大队旁)
靖江微创医院
电话 0523-84505233
网址
http://www.tzwcnk.net
http://www.tzwcnk.com
地址 靖江市西环南路119号(市二院向南50米)
宿迁
宿迁市妇产医院
泗洪阳光儿童医院
浙江
杭州
杭州新东方妇产科医院
杭州玛莉亚妇女医院
网址 http://www.hzmly.com
杭州虹桥医院
网址 http://www.hzhqyy.com
杭州建国医院
杭州天目山妇产医院(杭州天目山医院)
网址
http://www.97120.cn/
http://www.tmsfk.com/
地址 杭州市天目山路319号
证据:
确认莆田系,参见文末“上海美迪亚医院投资集团有限公司”条目!
天涯帖子: 杭州天目山医院,你到底黑不黑?
杭州萧山九龙男科医院
网址
http://www.hzjl120.com
http://www.nkxsjl.com
杭州广仁医院
网址
http://www.hzgryy.com
http://www.zjbybyw.com
杭州阿波罗男子医院
网址
http://www.hzabl.com
http://www.hzabl.cn
杭州和睦医院
网址 http://www.hm120.cn
杭州真爱医院
杭州同济医院
网址
http://www.0571tongji.com
http://www.hztjh.com
杭州美莱医疗美容医院
电话 400-0085-188
网址 http://www.hzmylike.com/
地址 杭州市西湖区莫干山路333号
证据 参见文末“美莱医疗美容(连锁)医院集团”条目!
宁波
宁波美莱整形美容医院
网址 http://www.nbmylike.com
宁波博爱医院
宁波虹桥医院
网址 http://www.nbhqyy.com
宁波欧亚男科医院
网址 http://www.nbnkyy.com
宁波甬城医院
慈溪圣爱医院
网址 http://www.cxsayy.net
温州
瑞安华东医院
温州长征医院
网址 http://www.120cz.com
温州协和医院
温州建国医院
网址
http://www.wzjg120.com
http://www.wzcwk120.com
温州红旗医院
温州爱尔五官科医院
嘉兴
浙江新安国际医院
网址 http://www.sian.cc
嘉兴曙光中西医结合医院
网址 http://www.jxjk.cn
嘉兴博爱医院
网址 http://www.82056999.com
湖州
湖州阳光女子医院
网址
http://www.snvzi.com
http://www.hznvzi.com
金华
浙江金华博康生殖医院
舟山
舟山现代妇科医院
网址 http://www.zsxdfk.com
舟山市千岛医院
舟山市千岛医院妇产科
台州
温岭和平医院
丽水
丽水九龙男科医院
工商注册名称 丽水九龙医院有限公司
地址 浙江省丽水市莲都区解放街88号
电话 0578-2119011
QQ:3082311948
网址
http://www.lsjlyy.com
http://www.2119011.com
http://www1.2119011.com
www.lsjlnkyy.com
m.lsjlnkyy.com
相关信息 全国企业信用信息公示系统(浙江)显示,法定代表人为陈元华。
安徽
合肥
合肥市中山医院
合肥九龙男科医院
合肥丹凤朝阳妇科医院
合肥解放军105医院整形美容中心
合肥现代妇产医院
合肥军大医院
合肥红十字会医院
合肥阳光消化病医院
合肥1+1美容医院
合肥丽人美容医院
合肥丽人妇科医院
电话 0551-63653311
网址
http://www.lr120.com/
http://3612999.com/
地址 安徽省合肥市包河区屯溪路349号
合肥喜得儿孕育医院
合肥当代中西药医院
合肥博大泌尿专科医院
合肥凤凰肿瘤医院
安徽维多利亚整形医院
安徽韩美整形外科医院
合肥友好医院
合肥同济医院
合肥仁爱中医院
合肥远大男科研究院
合肥天伦不孕不育医院
合肥时代医院
合肥北大白癜风医院
合肥国仁皮肤病医院
合肥新科白癜风医院
合肥艺星整形医院
合肥恒美整形医院
合肥华美整形医院
合肥名人眼科医院
合肥新视界眼科医院
电话 400-6651616
网址 http://www.hfneweye.com/
地址 合肥包河区徽州大道689号(徽州大道与九华山路交口往南300米)
合肥普瑞眼科医院
巢湖康平妇产医院
巢湖阳光妇幼医院
芜湖
芜湖阳光眼科医院
芜湖丹凤朝阳妇科医院
蚌埠
澳美佳女子医院
蚌埠解放军一二三中心医院
马鞍山
马鞍山康豪泌尿专科医院
网址 www.kh91.com
电话 0555-2402821
马鞍山红十字医院
网址 www.hszyy.cn
电话 0555—2345519
马鞍山金陵医院
网址 www.120mas.com
电话 0555-2161555
淮北
淮北女子医院(现已改名为 淮北友好妇产医院)
淮北阳光心理院
淮北九龙男科医院
淮北和平医院
亳州
涡阳阳光医院
福建
福州
福州华美美莱整形医院
电话 0591-22966666
网址 http://www.fzhmzx.com/
地址 福州市晋安区塔头路177号
证据 参见文末“美莱医疗美容(连锁)医院集团”条目!
福州鼓楼医院
福州现代妇产医院
福州左海医院
福州总医院第二附属医院
福清阳光女子医院
福州东南女子医院
福州福兴妇产医院
福州誉盛医院
厦门
厦门登特口腔医院
厦门友好妇科
厦门湖里康乐门诊部
厦门前埔医院
莆田
莆田丽人妇科医院
莆田盛兴医院
莆田中西医肛肠医院
莆田口腔医院
泉州
泉州华美美莱整形美容医院
负责人 龚英格
电话 0595-28266666
网址
http://www.qzmylike.com
http://www.qzhmzx.com
泉州南亚华侨医院
泉州新阳光女子医院
负责人 郑海滨
电话 0595-28966788
网址
http://www.0595fk.com
http://www.xyg120.net
http://www.xygfkyy.com
http://www.xygfkyy.net
http://www.qzsznyy.net
http://www.qzsznyy.com
泉州坤如玛丽医院
负责人 徐金源
网址 http://www.0595ml.com
泉州南亚医院
泉州南亚医院黑龙江和平医院
龙岩
龙岩女子医院
用户反馈 诚信网
用户反馈 Google缓存
龙岩阳光医院
江西
南昌
南昌市第五医院
地址 江西省南昌市青云谱区井冈山大道239号(家乐福超市对面)
电话
400-1606199
0791-86658901
网址 http://www.wy120.com
微信公众号 ncdwrmyy
南昌仁爱女子医院
地址 江西省南昌市洪城路636号(洪城大市场正门往西300米路南)
电话
0791-85207758
0791-86573333
网址 http://www.nz91.com
南昌曙光手足外科医院
地址 江西省南昌市解放西路99号
电话 0791-88230000
网址 http://www.hand120.com
微信公众号 shuguanggongyi
南昌佳美美容医院
地址 江西省南昌市青云谱区洪都南大道273号
电话 400-6796066
网址 http://www.nccharm.com.cn
微信公众号 nccharm
南昌华山不孕不育医院
地址 江西省南昌市迎宾北大道285号
电话
400-6013130
0791-86658913
18507005120
网址
http://www.hsbyby.cn
http://www.nch3yy.com
南昌博爱泌尿专科医院
地址 江西省南昌市东湖区胜利路355号(近八一桥)
电话
0791-86658922
0791-87958517
网址
http://www.btsdhjsj.com
http://www.ncboai.cn
http://www.ncboai.net
http://www.ot8.cn
http://www.xngxw.com
542099677
3237581371
南昌东大肛肠专科医院
地址 江西省南昌市胜利路298号(八一桥旁)
电话 0791-86822072
网址 http://www.0791gc.com
微信 ddgc0791
南昌博大耳鼻咽喉专科医院
地址 江西省南昌市青云谱区洪都南大道237号
电话 0791-86658908
网址 http://www.ncebh.com
萍乡
萍乡市新世纪泌尿专科医院
萍乡妇科医院
九江
九江玛丽亚医院
九江新世纪医院
九江阳光女子医院
赣州
赣州现代泌尿专科医院
吉安
江西吉安市第二人民医院
上饶
上饶东大肛肠专科医院
上饶协和医院
山东
济南
山东东方男科医院
用户反馈 患者意见1
用户反馈 Google缓存
用户反馈 患者意见2 意见仅代表发贴人
山东紫荆花医院
用户反馈 患者朋友
用户反馈 Google缓存
山东红十字会医院
用户反馈 患者1
用户反馈 Google缓存
济南一零六医院
济南中医不孕不育医院
济南中医白癜风医院
济南中医精神病医院
济南中医肝病医院
济南中医静脉曲张医院
济南中医风湿病医院
济南中山肝病医院
济南中德骨科医院
济南中研皮肤病医院
济南九龙泌尿专科医院
济南乳腺医院
济南乳腺病医院
济南五洲医院
济南六一天使儿童医院
济南华夏医院
济南协和肝病医院
济南和谐妇科医院
济南哮喘病医院
济南圣玛利亚妇产医院
济南坤如玛丽医院
济南复元康复医院
济南妇科医院
济南整形美容医院
济南泉城医院
济南海峡美容整形医院
济南现代皮肤病医院
济南白癜风医院
济南真爱妇科医院
济南神康医院
济南美莱整形医院
济南耳鼻喉医院
济南肛肠医院
济南股骨头医院
济南肾病医院
济南胃肠病医院
济南血液病医院
济南银屑病医院
济南阳光女子医院
济南集美美容整形医院
济南青华不孕不育医院
济南骨科医院
解放军第三七一中心医院
青岛
青岛妇婴医院
青岛玛丽妇产医院
青岛长征院
青岛曙光男科医院
山东青岛曙光医院
青岛集美整形美容医院
青岛新阳光医院
青岛安宁医院
青岛开发区友爱医院
胶南丽华医院
淄博
山东淄博金盾医院
淄博女子医院
烟台
烟台丽华妇科医院
潍坊
潍坊博爱医院
潍坊长安医院
潍坊和平医院
威海
威海现代女子医院
德州
齐河阳光医院
聊城
聊城东昌府三医院
河南
郑州
河南中都皮肤病医院
河南省军区医院
郑州集美整形美容医院
郑州华夏白癜风医院
巩义阳光医院
郑州华山医院
网址 byby.huashanhp.com
郑州丽天整形医院
郑州长江医院
网址 www.zzcj120.cn
郑州天伦医院
网址
www.zztlyy888.com
www.zztianlun.org
郑州名仕医院
网址 www.msnkyy.cn
郑州阳光男科医院
网址
www.zznk0371.cn
www.ygnkyy120.com
www.zznk120.net
www.zzygnk120.com
www.ygnk0371.com
www.zznk0371.com
www.zzyg120.com
www.zzygnk120.cn
www.0371ygnk.com
www.zzygnkyy.cn
www.zzygnk.net
www.67033333.com
www.zzyg120.cn
河南省医药科学研究院附属医院
网址
www.hnmtfkyy.com
www.gbk0371.com
www.yy120fk.com
www.zzmnwk120.com
www.hngb0371.com
www.jwjyzz.com
www.hnksc.net
www.yyy120fuke.com
www.hnyymnnk120.com
www.aifa8.com
www.yy120fuke.com
www.hnyymnwk120.com
www.zzyymn120.com
www.yygb0371.com
www.tlxhyc.com
www.hnyygbk.com
www.hnhllygs.com
www.hnyy0371.com
www.hnbyby.org
www.yyyfk120.com
www.zzjk91.com
www.hnswck.com
www.zzyymnwk120.com
www.yiyao120fuke.com
www.sxdq360.com
www.hnyyyxbk.com
www.120hnmtyy.com
www.hnyyyxb.com
www.yiyao120fk.com
www.yyfuke120.com
www.hnyyaow.com
www.gbyy0371.com
www.zzyymnnk120.com
www.zzyymnk120.com
www.zzyynk120.com
www.yyyfuke120.com
www.hnxbkyy.com
www.yiyaofuke120.com
www.yywck.net
www.hngbk0371.com
洛阳
洛阳牡丹女子医院
解放军534医院
平顶山
平顶山市武警医院
安阳
安阳协和医院
新乡
新乡阳光医院
新乡和平医院
解放军371医院
许昌
许昌新时代妇科医院
许昌凤凰医院
许昌玛丽妇科医院
网址 www.xcnxjk.com
许昌现代男科医院
网址
www.xcxdnk.net
xcxdnk.com.cn
xcxdnk.com.cn
许昌中山医院
网址
http://www.xczshp.com
http://www.xcyyhp.com
http://www.2158888.com
http://www.xczsnk.com
地址 许昌市西大街280号
电话 0374-2158889
漯河
漯河东方医院
信阳
信阳泌尿外科医院
信阳博士医院
地址:信阳市申城大道(原大庆路)沁园春旁
电话 0376-3222555
网址 http://www.bbrmyy.com
湖北
武汉
不孕症
武汉送子鸟不孕不育医院
电话 027-83771313
网址 http://www.szn027.com
武汉黄浦中西医结合医院
电话 400-9961009
网址 http://www.ctbyw.com
妇科/产科
武汉现代妇产医院
电话 027-68836686
武汉当代佳丽医院
电话 027-87563555
武汉阳光女子医院
广州军区武汉总医院南湖妇产中心
武汉百佳医院
电话 027-66666333
网址 http://www.whbjyy.com
武汉玛利亚妇产科医院
电话 027-88858965
网址 http://www.mlyfc.net
武汉都市妇产医院
电话 027-85268003
网址 http://www.whdsfk.com
武汉真爱妇产医院
电话 027-87189999
网址 http://www.87189999.com
武汉友好医院
男科
武汉阿波罗男科医院
电话 027-85888669
网址 http://www.whablnk.com
武汉曙光中西医结合医院
电话 027-88129788
武汉博大男科医院
电话 027-85896666
网址 http://www.whnanke.net
武汉现代泌尿外科医院
电话 027-82886888
网址 http://www.xdmnyy.com
武汉名仕泌尿外科医院
电话 027-88328080
网址 http://www.whmsnk.com
综合医院
武汉华夏医院
电话 027-87275566
网址 http://www.whhxyy.com
湖北省荣军医院
电话 027-62084891
网址 http://www.hbsrjyy.com
武汉仁爱医院
电话 027-83798531
网址 http://www.whrenai.com
武汉中原医院
电话 027-85733999
网址 http://www.whzyyy.com
武汉博爱医院
电话 027-86722223
网址 http://www.boaifk.com
武汉华仁医院
电话 027-87875387
武汉东南医院
电话 027-83659999
武汉同济来福康医院
电话 027-83884040
武汉虎泉医院
电话 027-88089120
网址 http://www.hqsmk.com
整形科
武汉华美整形医院
电话 400-0070606
网址 http://www.zswzx.com
武汉五洲美莱整形美容医院
电话 027-86785799
网址 http://www.88077777.com
武汉韩辰整形医院
电话 400-0303027
网址 http://www.4000303027.com
武汉艺星医疗美容医院
电话 400-0601992
网址 http://www.whyestar.com
专科
武汉博仕肛肠肛肠医院
电话 027-88855999
网址 http://www.39bsw.com
武汉仁安眼耳鼻喉医院
电话 400-6027669
网址 http://www.whrenan.com
武汉京都结石病医院
电话 027-88616718
网址 http://www.hbjieshi.com
武汉太医堂中医院
武汉国医堂
电话 027-87639188
网址 http://www.gytsm.com
武汉明德肛肠医院
电话 027-87585666
网址 http://www.whmdgc.com
三甲医院外包科室
广州军区武汉总医院(生殖中心、肿瘤科、整形)
武汉八医院(肛肠科)
解放军161(骨科、妇科、男科、整形)
空军457(骨科、肝病、妇科、男科、整形)
硚口中山医院(骨科)
武汉科技大学附属天佑医院(介入中心、植发)
梨园医院(介入中心、肿瘤科)
湖北省武警总医院(整形)
武汉解放军193医院(肝病、整形)
黄石
湖北黄石福康医院
襄阳
襄阳市第五人民医院
襄阳东大肛肠医院
襄阳东方妇科女子医院
襄阳仁爱女子医院
荆州
荆州华康医院
黄冈
黄冈泌尿专科医院
湖南
长沙
长沙华夏医院
长沙湘江医院七大医院
长沙阳光医院
长沙仁爱医院
长沙恒生手外科医院
长沙博大泌尿专科医院
长沙南方骨外科医院
长沙现代女子医院
长沙丽人妇产医院
武警湖南省总队医院
长沙玛丽亚妇产医院
湘潭
湘潭阳光眼科中心
衡阳
衡阳蒸湘医院
耒阳云森医院
网址 http://www.lyys120.com/
郴州
湖南郴州福康医院
娄底
娄底阳光医院
广东
广州
广州华美美莱整形医院
广州现代医院
广州长安医院
广州益寿医院
广州利德医院
番禺东方俪人医院
番禺玛莉亚肛肠医院
广州圣亚泌尿外科医院
广州女子医院
广州市江南医院
广州济慈医院
广东民安医院
广州长泰医院
广州健安医院
广州458医院
广州花都人爱医院
广州远东美容医院
广东福康医院
韶关
韶关圣亚泌尿外科医院
负责人:陈庆龙(前)、李金高(后,其身份证号码为3503开头,属福建省莆田市)
电话:0751-8529999
网站:
http://0751fk.com/
http://www.men91.net/
http://www.nkyyy.com/
http://0751sy.com/
地址:韶关市武江区沙洲路34号
证据:
http://www.bjptsh.com/shld/cwfhz/2015/0817/368.html (陈庆龙为北京中豪医疗集团董事长);
https://zh.wikipedia.org/zh-hans/%E8%8E%86%E7%94%B0%E7%B3%BB (北京中豪基业医疗投资管理有限公司属莆田系);
http://blog.sina.com.cn/s/blog_94f216d10102vbgv.html (莆田医疗大佬2014最新集团名录中第55,其中广州圣亚泌尿外科医、深圳圣亚泌尿外科医院、韶关圣亚泌尿外科医院、北京圣亚医院等圣亚系列医院为其代表医院,广州圣亚已列入莆田系)
韶关福康医院
负责人:赖慧群
电话:0751-8529999
网站:http://www.sgfk16.com/
地址:韶关市浈江区北江路丽江楼
证据:
http://blog.sina.com.cn/s/blog_94f216d10102vbgv.html (莆田医疗大佬2014最新集团名录中第66,韶关福康医院为吴氏医疗(集团)有限公司(北京福来康投资管理有限公司)下属医院;
https://zh.wikipedia.org/zh-hans/%E8%8E%86%E7%94%B0%E7%B3%BB (北京福来康属莆田系))
韶关爱民医院
负责人:赖慧群
电话:400-0751-513
网站:http://www.aimin120.com/
地址:韶关市武江区惠民南路23栋
证据:
http://blog.sina.com.cn/s/blog_903061a1010141ph.html (中国民营医疗集团100强(医界顾问版第58,韶关爱民女子医院为北京福来康下属医院,北京福来康属莆田系,另该医院与韶关福康医院共用ip(42.51.7.156),负责人更为同一人)
韶关韶州医院
负责人:占加锋
电话:0751-8288120
网站:暂无
地址:韶关市浈江区韶南大道中19号
证据:
http://zonghui.hxyjw.com/show-137803 (占加锋为莆田(中国)健康产业总会江苏支团苏州分会秘书长)
深圳
深圳美莱美容医院
深圳福华中西医结合医院
深圳博爱医院
深圳曙光医院
深圳远东妇儿科医院
深圳仁爱医院
深圳和美妇儿科医院
深圳仁康医院
深圳罗岗医院
深圳雪象医院
深圳健安医院
深圳华南妇科医院
深圳国瑞泌尿外科医院
深圳韩美医疗美容医院
深圳健丰医院
深圳龙济医院
深圳同仁妇科医院
深圳凤凰医院
深圳阳光医院
深圳中仁泌尿外科医院
负责人:林国金
网站:http://yyk.99.com.cn/baoan/105761/jianjie.html
电话:4008669999
证据:
https://www.google.com/#q=%E6%9E%97%E5%9B%BD%E9%87%91+%E5%8C%BB%E9%99%A2&btnK=Google+%E6%90%9C%E7%B4%A2
http://imgur.com/UzfXaWV
http://imgur.com/PdDIwHo
http://imgur.com/5PiBr6e
http://imgur.com/LcXYUo0
珠海
珠海惠爱医院
珠海九龙医院
珠海阳光医院
汕头
汕头妇产医院
佛山
佛山三水女子医院
顺德广济中医院
顺德新世纪泌尿医院
顺德庄头医院
顺德阳光康复医院
顺德阳新侠义道光康复医院
江门
江门玛丽妇科医院
江门福康医院
肇庆
肇庆福康医院
肇庆现代男科医院
电话 0758-2221120
网址 http://zqnkyy120.com/
地址 肇庆市端州区二塔路中段(市二人民医院前行20米左转)
惠州
惠州仁德妇科医院
惠阳女子医院
惠州东江泌尿专科医院
河源
河源协和男科(河源协和门诊部)
负责人:陈海滨
电话:0762-3605120
网站:
http://www.hyxhnk.com/
http://www.hynkjkw.com/
地址:河源市源城区河源大道南63号
证据:
https://www.liepin.com/company/gs1847693/ (河源协和男科属香港博华医疗投资集团,旗下有子公司中天医疗);
https://www.yigoudai.com/xw/companyShareholder.html (博华(香港)实业投资有限公司为莆田系医购贷股东);
http://www.rqbao.com/show-yigoudai/article-38347.html (博华(香港)实业投资有限公司是莆田(中国)健康产业总会的成员,为医购贷九个创办公司之一);
http://blog.sina.com.cn/s/blog_903061a1010141ph.html (莆田医疗大佬2014最新集团名录中第63,中天医疗董事长为陈金国)
河源现代医院妇科
负责人:钟兴娣
电话:400-666-0762
网站:
http://www.hyxdfk120.com/
http://www.hyrl120.com/ (粤ICP备11032832号)
地址:河源市河源大道北50号
证据:
粤ICP备11032832号属东莞市迈跃医院投资管理有限公司,该公司董事长为林诚坤;
http://zonghui.hxyjw.com/show-145338 (林诚坤为莆田健康产业总会广东分会惠河梅支会会长);
http://szgw.heyuan.gov.cn/content.aspx?nid=492 (林诚坤为河源现代妇科医院董事长)
河源博爱医院
负责人:待查
电话:0762-3360120
网站:
http://www.liftsct.com/ (闽ICP备08106057号)
http://ck.hyfuke.net/
http://www.hyfuke.net/
http://www.hyba120.net/
http://www.hyfc120.net/
http://www.affage.com/
http://www.hynanke.net/
http://www.ycba120.com/
http://www.haoyi120.net/
地址:河源市源城区新港路口1号
证据:
闽ICP备08106057号属厦门益康生殖健康与不孕症专业门诊部(http://www.xmnkw.net/) ;
http://blog.sina.com.cn/s/blog_903061a1010141ph.html (莆田医疗大佬2014最新集团名录中第11,厦门益康,福建新东方医疗投资有限公司属莆田(中国)健康总会名誉会长陈金秀);
http://www.fjxdfyl.com/xiangmuzhanshi/ (河源博爱医院和厦门益康同属福建新东方医疗投资有限公司)
东莞
东莞现代妇科医院
塘厦康桥医院
东莞康桥妇科医院
东莞乌沙医院
东莞万福妇产医院
东莞南华妇科医院
东莞东方泌尿专科医院
东莞玛丽亚妇产医院
电话 0769-22993333
网址 http://www.dgmaria.cn/
地址 东莞南城莞太大道(广彩城酒店旁)
中山
中山现代妇科医院
中山市国丹中医院
中山和平中医院
中山阳光医院
广西
南宁
陈氏家族
广西南宁华美整形美容医院 竹溪大道
华夏口腔诊所 竹塘路
南宁长江医院 秀厢大道
詹氏家族
南宁市玛莉亚妇科医院 北大北路
爱尔眼科 秀灵路
林氏家族
南宁曙光医院 中华路
广西中医药大学第一附属医院仁爱分院 明秀东路
都市丽人整形美容 竹溪立交附近
南宁中山医院 安吉大道
南宁协和医院 五一路
南宁医博中医肛肠医院 安吉大道
南宁肛泰中医肛肠医院 安吉路
黄氏家族
南宁天伦医院 明秀西路
地址 广西南宁市西乡塘区明秀西路152号
电话 0771-232111
网址 http://www.nntlbyby.com
广西阳光医院 疑似莆田系医院或在各医院承包科室
303医院(部分科室) 植物路
广西武警总队医院(部分科室) 鲁班路
武警广西总队医院 农院路
武警广西边防总队医院 明秀西路
广西军区直属门诊部 桃源路
南宁市妇幼保健院(部分科室) 友爱南路
南宁南国妇科医院 竹溪大道
北大妇科医院 大学东路
南宁南国妇科医院 青山路
南宁市博大医院 银海大道
南宁博锐医院(原南宁望州岭医院) 望州路
柳州
柳州福康医院
桂林
广西阳光医院
桂林阳光医院
海南
海口
武警海南总队医院妇科中心
重庆
重庆华美美莱整形医院
重庆华山中医乳腺病医院
重庆坤如玛丽医院
重庆现代女子医院
重庆都市丽人医院
重庆万州博生医院
重庆万州美妇产医院
涪陵博生和美妇产医院
重庆市爱德华医院
重庆五洲女子医院
重庆安琪儿妇产医院
重庆阳光医院
万州阳光眼科医院
重庆爱德华医院
重庆生殖健康医院
重庆红楼医院
解放军第324医院
涪陵三峡医院
重庆红十字会医院
重庆红楼医院雅安解放军第三十七医院
四川
成都
成都长征医院
成都永康医院
成都丽人女子医院
成都博爱医院
成都安琪儿妇产医院
成都蜀都乳腺医院
圣贝国际牙科(成都)旗舰医院
成都糖尿病专科医院
成都曙光男科医院
成都瑞恩糖尿病医院
成都欧亚男科医院
成都玛利亚(南区)天府国际妇产儿童医院
成都新世纪肛肠医院
四川阳光妇科医院
成都济民女子医院
成都维多利亚女子医院
成都仁品耳鼻喉专科医院
成都天康医院
成都养和堂综合门诊部
成都中仁泌尿外科医院
成都东大肛肠医院
成都博大男科医院
成都博润白癜风医院
成都西南骨科医院
成都康新妇科医院
成都肛泰肛肠医院
成都龙都医院
成都天大不孕不育医院
成都华美美莱整形医院
成都送子鸟不孕不育医院
成都九龙医院
成都喜得儿不孕不育医院
四川华美紫馨医学美容医院
四川省生殖健康研究中心附属生殖专科医院
四川肛肠医院
圣贝国际牙科(成都)旗舰医院
成都玛丽亚(南区)天府国际妇产儿童医院
成都市西区医院产科
成都玛丽亚妇产儿童医院
武警四川总队医院(部分科室)
成都阳光妇科医院
四川生殖健康中心专科医院
武警四川省消防总队医院(妇科/泌尿科)
四川中医药高等专科学校附属医院
成都美莱医学美容医院
电话 028-6826 8888
网址 http://www.scmylike.com/
地址 成都市青华路31号(杜甫草堂北大门旁)
证据 参见文末“美莱医疗美容(连锁)医院集团”条目!
泸州
泸州东大肛肠医院
绵阳
四川绵阳美康医院
乐山
武警四川总队医院
南充
南充解放军51医院
南充东大肛肠医院
雅安
解放军第三十七医院
资阳
资阳泌尿专科医院
凉山
凉山妇产医院
凉山男科医院
凉山华西医院
凉山生殖健康医院
凉山骨科医院
贵州
贵阳
贵州退休医师医院
贵阳五官中心
贵阳长江医院
贵阳和谐阳光医院
贵阳马王庙医院
贵阳现代女子医院
贵阳和美妇产医院
贵州省第二人民医院耳鼻喉科(贵阳耳鼻喉科医院)
电话 400-0851962
网址
http://www.o-wei.com
http://www.ygzhu8.com
贵阳结石病医院
电话
0851-88546001
0851-88546002
网址
http://www.qlxzhuanke.com
http://www.gyjsbyy.com
遵义
遵义女子医院
安顺
安顺阳光妇科医院
毕节
毕节现代医院
铜仁
铜仁华夏医院
云南
昆明
昆明华美美莱整形医院
云南玛莉亚女子医院
云南玛莉亚医院
昆明西昌路医院
昆明阳光医院
昆明仁爱医院
昆明九州医院
解放军478医院妇产中心
昆明九州泌尿医院
云南现代妇产科医院
昆明天伦妇产医院
云南同仁新华医院(新新华医院)
昆明阳光医院
昆明曙光医院
云南九洲医院
云南协和医院
云南肛泰肛肠医院
云南骨科医院
武警云南省边防总队医院糖尿病专科
昆明东大肛肠医院
昆明中英安琪儿妇产医院
昆明丽都仁爱医疗美容医院
昆明骨科医院
昆明强生泌尿专科医院
昆明华希医院
昆明军都三三九医院
解放军五三三医院
解放军四七八医院妇产中心
昆明泌尿生殖专科医院
昆明妇产医院
昆明和万家妇科医院
昆明圣安妇产医院
昆明宝岛妇产医院
昆明送子鸟不孕不育医院
昆明男健医院
昆明都市俪人医院
昆明普瑞眼科医院
昆明当代妇产医院
云南中医肠胃病医院
电话:0871-68339233
地址:云南省昆明市五华区圆通街26号
负责人:朱争鸣、陈刚、连明国、张少峰
网址:
http://www.kmwcb.cn/index.html
http://www.zywczk.com/a/jixingweiyan/2016/1230/211.html
http://www.yngcbyy.com/a/yiyuanjianjie/
http://www.yngcbyy.com/a/jixingweiyan/
http://m.67368899.com/index.html
证据:
证据一:我自己的一个亲人去这个医院看病,被坑了很多的钱;就是做了一次小手术,手术没有做好,没有做成功,留下了很大的后遗症(这是转到其他医院检查时才发现的),而且在这个医院中被迫开了很多没有用的药,这个医院不但治不好病而且还很坑人
证据二:在大众点评上有好些关于这个医院的差评,http://www.dianping.com/shop/27249532
证据三:之前在天涯论坛上看到过有人报道这家医院的一些不要脸、没有道德的医疗的行为,现在这个帖子不知是什么原因,找到了好像是被删了,之前看到这个帖子是在昆明板块上
证据四:之前这个医院有百度推广,随便一搜这个医院的名字,都有很多关于这个医院的推广和广告,现在去百度搜,基本都找不到了
证据五:从名字也可以看得出来,这么好的、霸气的名字主要就是为了吸引人吧,其实医疗、医德很差
曲靖
富源阳光医院
曲靖九州医院
曲靖曙光泌尿专科医院
玉溪
玉溪九州医院
玉溪民康医院
保山
保山现代妇产医院
昭通
昭通玛丽妇产医院
丽江
丽江九洲医院
普洱
普洱云美妇产医院
临沧
临沧市临翔区华西医院
文山
文山曙光医院
文山圣玛妇产医院
西藏
拉萨
西藏博爱医院
拉萨北大泌尿生殖医院
陕西
西安
西安俪人医院
武警陕西总队医院
西安阳光医院
西安东大肛肠医院
商洛
商洛市红十字会医院
纠纷 女子治精神病后垂危 涉事医院未经批准冠名红会
商洛市博爱医院
纠纷 女子治精神病后垂危 涉事医院未经批准冠名红会
青海
西宁
青海西宁莆田友谊医院
西宁现代妇产医院
西宁现代妇产医院
宁夏
银川
宁夏西京妇产医院
新疆
伊犁
伊犁阳光女子医院
伊宁阳光女子医院
乌鲁木齐
新彊维吾尔自治区人民医院肿瘤中心
新疆爱德华医院
甘肃
兰州
兰州仁和医院
兰州天伦不孕症医院
网址 http://www.lztlyy.com
网站
医网
中华整形网
中华不育网
广州人流网
中国肿瘤网 (未完待续)
网址 http://www.cnzhongliu.com/
中华肿瘤康复网(中医肿瘤康复咨询网) (未完待续)
电话
0371-68717218
0371-68715173
13803893403
13803893402
网址 http://www.songhongen.com.cn/
地址 郑州市航海中路95号(台胞小区24号)
相关资料:
工信部备案信息: 主办单位:个人(并非企业!);网站负责人:宋洪恩;备案许可号:豫ICP备09017762号-1; 网站名称:健康康复网(和显示名称“中医肿瘤康复咨询网”明显不符,而百度搜索显示为“中华肿瘤康复网”)
网站显示“汇款信息”:
邮局汇款 安全可靠,一疗程30天,药重15公斤许,药费2250元,特快专递邮费100元,共2350元,适用于晚期患者。汇款时请用正楷填写汇款通知单,然后有邮局办理。我科在收到汇款通知单后,立即将药物、说明书、《协议书》及收据清单一并寄去,若条件许可,您可将汇款收据贴在一张白纸上,写详地址、邮编、电话及汇款人姓名、病情简短说明,如加密码将汇票号码及密码一并写上,通过传真、电话或短信传到我科,我科收到信息后,经查无误,可立即发药。
收款人:宋洪恩 地址:河南省郑州市航海中路95号附24号 邮编:450005 电话:0371—68717218 68715173 短信手机:(0)13803893403
周艳丽 中国邮政银行河南省郑州政通路支行 卡号:6221 8849 1000 6293 457 周艳丽中国农业银行郑州市二七支行 卡号:6228 4507 1800 8739 578
谷歌搜索宋洪恩显示大量不靠谱消息
美莱医疗美容(连锁)医院集团
电话 400-898-0000
网址 http://www.mylike.com/
证据:
工信部备案信息: 上海美莱投资管理有限公司; 网站负责人:陈国付; 备案号:沪ICP备12022412号-6;
全国企业信息公示系统显示,上海美莱投资管理有限公司法定代表人陈金秀,自然人股东为陈金秀和詹建昇。
谷歌缓存页面显示(这是谷歌对上海市莆田商会网页的缓存),陈金秀是上海市莆田商会名誉会长,籍贯:秀屿区东庄镇
以上证据确认完毕,可按照美莱医疗美容医院集团的官网,确认其下属各地医院属于莆田系,无需继续查证。
中华名医协会 (未完待续)
电话
15911030069
香港 852-2915.7428
网址 http://www.chinesefamousdoctor.org/
地址: 香港铜锣湾轩尼诗道488号轩尼诗大厦10M(永久地址)
相关资料:
工信部备案信息:主办单位名称:北京世华天地网络技术服务有限公司;主办单位性质:企业;网站名称:名医协会;网站负责人姓名:周建;网站备案许可号:京ICP证000045号-23 ;
上海美迪亚医院投资集团有限公司
地址 上海市闵行区吴中路686弄D座10楼
网址 http://shmdy2015.tecenet.com/
证据:
上海工商行政管理局企业注册登记信息公开查询显示,上海美迪亚医院投资集团有限公司的法定代表人:陈国兴;
陈国兴相关信息:莆田(中国)健康产业总会,
公司主页显示: 美迪亚医院集团目前投资的主要项目有:中美合资上海美迪西生物医药有限公司、北京中研东方国际医学研究院,上海、杭州、深圳、武汉、长沙、无锡、昆山、温州、宁波、河南新郑等地设立大型医疗机构,拥有:上海虹桥医院、上海健桥医院、上海新虹桥医院、昆山虹桥医院、无锡虹桥医院、杭州虹桥医院、杭州天目山医院、深圳建国泌尿外科医院等三十多家医院。 (可依据以上名单确认各地区医院为莆田系)
莆田(中国)健康产业总会第一届总顾问、荣誉会长、高级顾问、名誉会长、顾问名单
总顾问
陈至立
终身荣誉会长
陈德良
高级顾问
殷大奎
名誉会长
詹国团
陈金章
翁国亮
顾问
张守臣
吴良好
陈春玖
林福元
林宗金
詹清荣
第一届领导成员名单(同职务按姓氏笔画排序)
会长(理事长)
林志忠
监事长
黄德锋
执行会长
林国良
詹阳斌
秘书长
苏金耀
常务副理事长
苏元族
苏庆灿
杨文秀
吴曦东
陈国兴
陈新贤
林玉明
林国良
詹国连
詹阳斌
常务副监事长
王文龙
刘亚勇
苏金耀
林长青
林志程
林金土
林金宗
卓朝阳
柯向阳
黄开添
游文龙
蔡兵洪
副理事长
李文献
李建兵
杨秀全
吴永同
吴美先
陈伟
陈志松
陈国森
陈建新(江西)
陈建新(山东)
陈珍荣
陈俊雄
陈德龙
林元财
林玉鹏
林国兴
林国珍
林国喜
林国雄
林明亮
林金龙
林新太
卓开敏
卓进芳
卓建新
郑建发
柯向前
黄元立
黄向权
黄国华
黄钰孙
游金云
游金辉
詹金星
常务副会长(100人)
王友松
占万龙
刘德祥
苏开银
苏其远
苏国英
苏国荣
苏金协
苏金国
苏建文
苏建阳
苏建凯
苏建清
苏银棋
苏珍焰
苏勇钦
苏瑞高
李国华
李金山
李金国
杨国春
吴元来
吴元楷
吴玉平
吴来京
吴奇斌
吴国旺
吴国勇
吴国营
吴明海
吴建仁
吴建腾
吴德坤
张俊飞
张俊武
张清龙
陈文粦
陈玉云
陈帅同
陈亚淙
陈庆林
陈庆棋
陈国华
陈国松
陈国贤
陈建华
陈建辉
陈春来
陈春森
陈春强
林元太
林文火
林玉荣
林玉栋
林玉盛
林玉瑞
林光琰
林仲伟
林华东
林庆新
林志重
林国华
林国庆
林国来
林国祥
林国瑞
林明雄
林金队
林金耀
林建群
林春棋
林泉芳
林俊霖
林振东
卓开兴
卓永义
卓志芳
卓国华
卓国勇
卓建三
郑健
郑文寿
郑亚兴
郑庆水
郑银土
胡阳
胡朝
翁庆苍
黄元彪
黄国清
常小铁
游福本
游福章
詹天福
詹国城
詹宗阳
詹建兴
詹珍耀
戴信敏
魏国华
副监事长(27人)
苏元钗
苏国华
苏国忠
苏金灿
苏顺振
李国水
李国盛
李昕隆
杨永昌
张泓帆
张清尧
陈仙强
陈光荣
陈庆荣
陈志峰
陈志强
林玉树
林奇峰
林国添
林堂明
卓茂林
卓清芳
黄国明
曾金山
詹国章
詹建光
詹海山
About
OpenPower工作组收集汇总的医院开放数据
open-power-workgroup.github.io/Hospital
Resources
Readme
Activity
Custom properties
Stars
6.7k
stars
Watchers
412
watching
Forks
1k
forks
Report repository
Releases
No releases published
Packages
0
No packages published
Contributors
94
+ 80 contributors
Languages
HTML
61.5%
Python
29.4%
Ruby
8.6%
Shell
0.5%
Footer
© 2024 GitHub, Inc.
Footer navigation
Terms
Privacy
Security
Status
Docs
Contact
Manage cookies
Do not share my personal information
You can’t perform that action at this time.
SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination | Nature Communications
SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination | Nature Communications
Skip to main content
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Advertisement
View all journals
Search
Log in
Explore content
About the journal
Publish with us
Sign up for alerts
RSS feed
nature
nature communications
articles
article
SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination
Download PDF
Download PDF
Article
Open access
Published: 28 June 2022
SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination
Estelle Vincendeau
ORCID: orcid.org/0000-0002-0231-16091, Wenming Wei1, Xuefei Zhang
ORCID: orcid.org/0000-0002-1873-66792 nAff9, Cyril Planchais3, Wei Yu
ORCID: orcid.org/0000-0002-1777-52541, Hélène Lenden-Hasse1, Thomas Cokelaer
ORCID: orcid.org/0000-0001-6286-11384,5, Juliana Pipoli da Fonseca4, Hugo Mouquet3, David J. Adams
ORCID: orcid.org/0000-0001-9490-03066, Frederick W. Alt2, Stephen P. Jackson
ORCID: orcid.org/0000-0001-9317-79377, Gabriel Balmus
ORCID: orcid.org/0000-0003-2872-44688, Chloé Lescale
ORCID: orcid.org/0000-0003-0622-11491 & …Ludovic Deriano
ORCID: orcid.org/0000-0002-9673-95251 Show authors
Nature Communications
volume 13, Article number: 3707 (2022)
Cite this article
4100 Accesses
6 Citations
10 Altmetric
Metrics details
Subjects
Class switch recombinationDNA recombinationDouble-strand DNA breaksVDJ recombination
AbstractSHLD1 is part of the Shieldin (SHLD) complex, which acts downstream of 53BP1 to counteract DNA double-strand break (DSB) end resection and promote DNA repair via non-homologous end-joining (NHEJ). While 53BP1 is essential for immunoglobulin heavy chain class switch recombination (CSR), long-range V(D)J recombination and repair of RAG-induced DSBs in XLF-deficient cells, the function of SHLD during these processes remains elusive. Here we report that SHLD1 is dispensable for lymphocyte development and RAG-mediated V(D)J recombination, even in the absence of XLF. By contrast, SHLD1 is essential for restricting resection at AID-induced DSB ends in both NHEJ-proficient and NHEJ-deficient B cells, providing an end-protection mechanism that permits productive CSR by NHEJ and alternative end-joining. Finally, we show that this SHLD1 function is required for orientation-specific joining of AID-initiated DSBs. Our data thus suggest that 53BP1 promotes V(D)J recombination and CSR through two distinct mechanisms: SHLD-independent synapsis of V(D)J segments and switch regions within chromatin, and SHLD-dependent protection of AID-DSB ends against resection.
Similar content being viewed by others
ERCC6L2 promotes DNA orientation-specific recombination in mammalian cells
Article
30 April 2020
Xiaojing Liu, Tingting Liu, … Fei-Long Meng
The fundamental role of chromatin loop extrusion in physiological V(D)J recombination
Article
11 September 2019
Yu Zhang, Xuefei Zhang, … Frederick W. Alt
Wapl repression by Pax5 promotes V gene recombination by Igh loop extrusion
Article
01 July 2020
Louisa Hill, Anja Ebert, … Meinrad Busslinger
IntroductionTwo programmed DNA double-strand break (DSB) repair processes participate in the generation of antigen receptor diversity in adaptive immune cells—V(D)J recombination that occurs in developing B and T lymphocytes and class switch recombination (CSR) that takes place in antigen-activated mature B cells1. V(D)J recombination is a cut and paste mechanism that assembles variable region exons encoding the antigen-binding domains of the B and T cell receptors2,3. It is initiated by recombination activating gene proteins RAG1 and RAG2 (forming the RAG endonuclease) which introduce DSBs between variable (V), diversity (D), and joining (J) segments and their flanking recombination signal sequences (RSSs)4. RAG-generated DSBs are subsequently repaired by proteins of the non-homologous end-joining (NHEJ) pathway within a so-called post-cleavage complex that is thought to participate in the stabilization and processing of DNA ends5,6. CSR modifies antibody effector functions by replacing the isotype expressed from IgM/IgD to IgG, IgA, or IgE1,7,8. At the DNA level, this is achieved by a deletional recombination event at the Igh locus between a donor (Sμ) and an acceptor repetitive switch region (Sx) that brings into proximity the V region and the exons encoding a new constant region thus allowing the expression of an antibody with a different isotype but with the same specificity. During CSR, activation-induced cytidine deaminase (AID) deaminates cytosines into uracils in transcribed S-regions, which are converted to DSBs with the help of base excision and mismatch repair proteins. CSR is completed by fusing donor and acceptor S-region DSB ends by NHEJ and, in its absence, by alternative end-joining (alt-NHEJ) that is more biased to use longer junctional microhomologies (MHs)9,10. In contrast to CSR, V(D)J recombination is much more reliant on NHEJ for the repair of RAG-DSBs and NHEJ-deficient mice—with the exception of XLF-deficient mice—suffer severe block in early B and T cell differentiation due to an inability to assemble V(D)J segments and thus to produce a functional pre-T or pre-B cell receptor9,10.Both RAG- and AID-induced DSBs trigger a DNA damage response during which DSB ends are detected by the MRE11-RAD50-NBS1 complex that activates ataxia telangiectasia-mutated kinase (ATM)1,11,12. Once activated, ATM phosphorylates multiple substrates including the histone variant H2AX that serves as an intermediate step to promote the assembly of DNA repair proteins over large chromatin regions surrounding the break site, most notably 53BP1 that can be visualized as chromatin forming foci in recombining lymphocytes1,11,12. Unlike NHEJ factors, these proteins are essential for CSR and have a more modest role in V(D)J recombination1,11,12. For instance, ATM-deficient cells are still capable of V(D)J recombination and ATM-deficient mice are only moderately immune-deficient but activated ATM-deficient splenic B cells have impaired CSR (i.e., 30 to 50% of wild-type (WT) cells)1,11,12. More illustrative is the case of 53BP1. In mice, 53BP1 deficiency has a modest impact on lymphocyte development and V(D)J recombination but causes a drastic reduction in CSR (i.e., 5 to 10% of WT cells) that is associated with enhanced intra S-region recombination, long DSB end resection that spreads outside S-regions and loss of orientation-specific recombination11,13,14,15,16,17. This suggests specialized roles for 53BP1 in CSR such as promoting S-region synapsis and protecting S-region DSBs from resection.The absence of a striking phenotype during lymphocyte development and V(D)J recombination in animals deficient for these DSB response factors does not mean that they have no role at all in promoting RAG-DSB repair. 53BP1 facilitates the joining of RAG-induced DSBs when DSBs are at a long distance, possibly by favoring chromosome tethering and/or mobility18. In the absence of XLF, a nonessential NHEJ factor, ATM and 53BP1 are required for repair of RAG-generated coding ends (CEs) and signal ends (SEs) and double-deficient mice have a severe combined immunodeficiency phenotype with lymphocyte development essentially blocked at the progenitor B and T cell stages, consistent with impaired V(D)J recombination19,20,21,22. Analyses of XLF/53BP1 double-deficient Abelson (Abl)-immortalized pro-B cell lines revealed a combined impact on the ability to join RAG-DSBs during V(D)J recombination, including the impaired joining of both CEs and SEs and increased resection of the un-joined CEs and SEs19,20,21,22. Thus, in the context of the ATM-dependent DSB response, 53BP1 seems to harbor similar DSB end-joining and DSB end-protection functions during CSR as well as during V(D)J recombination.53BP1 recruits RIF1 to shield DSB ends against resection, thereby directing the repair of DSBs toward NHEJ instead of homologous recombination23. The downstream effectors in the pathway have recently been identified and form the Shieldin (SHLD) complex that lies immediately downstream of 53BP1-RIF1 and is comprised of REV7/MAD2L2, SHLD1, SHLD2, and SHLD323,24,25. Epistasis between 53BP1-RIF1 and the SHLD complex is remarkable in multiple NHEJ reactions, including CSR, the fusion of telomeres lacking TRF2, and the repair of DSBs in BRCA1-deficient cells treated with PARP inhibitors23,24,25. In AID-inducible B cell lines, loss of any of the SHLD complex components similarly impairs CSR that is associated with enhanced DSB end resection and the accumulation of chromosomal breaks at immunoglobulin switching sites26,27,28,29,30,31,32,33,34. In mice, loss of REV7 or SHLD2 does not impact lymphocyte development while severely compromising CSR27,30. The recruitment of SHLD to DSBs is mediated by the association of SHLD3 to chromatin-bound RIF125. SHLD3 also interacts directly with REV7 that bridges SHLD2 and SHLD1, with SHLD2 possessing a ssDNA-binding activity that is essential to inhibit resection25. SHLD1 is a small (205 amino acid residues) low-abundance protein that lies at the very tip of the complex and for which clear functions have not yet been attributed25.Here, we generate mice and cells deficient for SHLD1, XLF, and XRCC4 to test the role of SHLD1 in antigen receptor diversification. We show that SHLD1- and SHLD1/XLF-deficient mice have normal lymphocyte development and perform robust RAG-DSB repair, demonstrating that SHLD1 is dispensable for V(D)J recombination. By contrast, we show that SHLD1 is essential to limit the extent of DNA end resection during CSR, providing an end-protection mechanism that enables both NHEJ and alternative end-joining pathways to functionally operate at AID-induced DSBs. Finally, we show that this end-protection function is required for the orientation-specific joining of AID-initiated DSBs. Thus, while SHLD1 is dispensable for V(D)J recombination, it is essential for productive CSR by controlling the processing of AID-DNA ends during NHEJ and alternative end-joining repair.Results
Shld1
−/− and Shld1
−/−
Xlf
−/− mice are viable and show no overt developmental phenotypeTo elucidate SHLD1 function in vivo, we analyzed Shld1 knockout mice (Shld1em1(IMPC)Wtsi, referred to hereafter as Shld1−/−) that we generated by CRISPR/Cas9-mediated deletion of the Shld1 coding sequence35,36,37 (Supplementary Fig. 1a–d). Shld1−/− mice were born at the expected Mendelian frequencies, were fertile and displayed no developmental abnormalities (Fig. 1a, b and Supplementary Fig. 1e, f).Fig. 1: Shld1−/− and Shld1−/− Xlf−/− mice are viable and show no overt developmental phenotype.a Number of live-born mice obtained from crosses between Shld1−/− Xlf+/− mice (left) or Shld1+/− Xlf−/− mice (right). Expected versus observed numbers were used to calculate one-sided Chi-square. Shld1−/− Xlf+/− cross: n = 83 observed live-born mice; Shld1+/− Xlf−/− cross: n = 68 observed live-born mice. b Total body weight (in grams) of adult mice (males and females, 6–8-week-old) from the different genotypes as indicated. Bars represent mean ± s.e.m., n = 9 independent mice (Shld1−/−), n = 6 (53bp1−/−), n = 19 (Shld1−/− Xlf+/−), n = 5 (Xlf−/−), n = 6 (Shld1+/− Xlf−/−), n = 16 (Shld1−/− Xlf−/−), two-sided Wilcoxon–Mann–Whitney test (*p = 0.047 (Xlf−/− vs Shld1−/−); *p = 0.0268 (Xlf−/− vs Shld1−/− Xlf−/−)). c Total thymocytes numbers. Bars represent mean ± s.e.m., n = 10 (WT; Shld1−/−), n = 4 (53bp1−/−), n = 8 (Xlf−/−), n = 9 (Shld1−/− Xlf−/−), two-sided Wilcoxon–Mann–Whitney test (*p = 0.014; **p = 0.008; ***p = 0.0005). WT: dark blue, Shld1−/−: red, 53bp1−/−: light blue, Xlf−/−: green, Shld1−/−Xlf−/−: yellow. d Total splenocytes numbers. Bars represent mean ± s.e.m., n = 13 (WT), n = 10 (Shld1−/−), n = 4 (53bp1−/−), n = 11 (Xlf−/−; Shld1−/− Xlf−/−), two-sided Wilcoxon–Mann–Whitney test (*p = 0.0396; **p = 0.002; ***p = 0.0008; ****p < 0.0001). e, f Analysis of B cell development. e Representative FACS analysis of bone marrow using B cell markers. f Ratio of CD43−B220loCD19+IgM− pre-B cells versus CD43+B220loCD19+IgM− pro-B cells. Bars represent mean ± s.e.m., n = 12 (WT), n = 10 (Shld1−/−), n = 4 (53bp1−/−), n = 11 (Xlf−/−; Shld1−/− Xlf−/−), two-sided Wilcoxon–Mann–Whitney test (**p = 0.0014 (Xlf−/− vs Shld1−/− Xlf−/−); **p = 0.0011 (WT vs 53bp1−/−); **p = 0.004 (Shld1−/− vs 53bp1−/−)). g, h Analysis of T cell development. g Representative FACS analysis of thymus using T cell markers. h Ratio of CD4−CD8−CD44−CD25− (DN4) cells versus CD4−CD8−CD44−CD25+ (DN3) cells. Bars represent mean ± s.e.m., n = 10 (WT; Shld1−/−), n = 4 (53bp1−/−), n = 8 (Xlf−/−), n = 9 (Shld1−/− Xlf−/−), two-sided Wilcoxon–Mann–Whitney test (**p = 0.004 (Xlf−/− vs 53bp1−/−); **p = 0.002 (WT vs 53bp1−/−); **p = 0.002 (Shld1−/− vs 53bp1−/−); ****p < 0.0001 (Shld1−/− vs Shld1−/− Xlf−/−)). n.s. non-significant (p ≥ 0.05), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Source data are provided as a Source Data file.Full size imageTotal cell numbers in the thymus and spleen of 6- to 8-week-old Shld1−/− mice were, on average, similar to those of wild-type (WT) (Fig. 1c, d). Flow cytometry revealed that the distribution of progenitor (pro-) B (CD19+CD43+B220+IgM−), precursor (pre-) B (CD19+CD43−B220+IgM−), newly-generated immature B (IgM+B220low) and recirculating B (IgM+B220high) cells in Shld1−/− bone marrow were similar to those of WT littermates (Fig. 1e and Supplementary Table 1). In addition, Shld1−/− mice contained splenic CD19+IgM+ total B cells, Follicular (B220+CD93−CD23+CD21+) and Marginal Zone (B220+CD93−CD23−CD21high) B cells at distributions and numbers equivalent to WT (Supplementary Fig. 1g–i and Supplementary Table 2). Similarly, the distribution of CD4−CD8− (double-negative, DN), CD4+CD8+ (double-positive, DP), and CD4+CD8− or CD4− CD8+ (single-positive, SP) Shld1−/− thymocytes was comparable to those of WT littermates (Fig. 1g and Supplementary Table 3) and Shld1−/− mice contained normal populations of splenic CD3+TCRβ+ T cells (Supplementary Fig. 1j and Supplementary Table 2). The absence of B- and T cell developmental block at the CD43+B220+IgM− pro-B cell (Fig. 1f) and CD4−CD8−CD44−CD25+ DN3 thymocyte (Fig. 1h) stages during which antigen receptor gene assembly is initiated suggests that V(D)J recombination is normal in Shld1−/− developing lymphocytes. Contrary to SHLD1-deficient mice and consistent with previous work16,18,30, 53bp1−/− mice harbored impaired B and T cell development, with a moderate block at the CD43+B220+IgM− pro-B (Fig. 1e, f) and CD4−CD8−CD44−CD25+ DN3 pro-T stages (Fig. 1g, h), accompanied by a mild decrease in the number of splenic B and T cell numbers (Supplementary Fig. 1g, j).XLF is functionally redundant with multiple members of the DNA damage response that include ATM, H2AX and 53BP119. As such, combined deficiency for H2AX and XLF leads to early embryonic lethality and Atm−/− Xlf−/− and 53bp1−/− Xlf−/− mice are born significantly smaller than control littermates and display a severe block in B and T cell development due to an inability to perform V(D)J recombination20,21,22. To test whether SHLD1 has overlapping functions with XLF during mouse development, we bred our Shld1−/− mice with Xlf−/− mice38,39 to generate Shld1−/− Xlf−/− animals (Supplementary Fig. 1b, d). Shld1−/− Xlf−/− mice were born at the expected Mendelian frequencies (Fig. 1a) and did not display growth defects (Fig. 1b and Supplementary Fig. 1f), indicating that in contrast to ATM, H2AX, or 53BP1, SHLD1 is dispensable for overall mammalian development in the absence of XLF.To test for a potential functional redundancy between SHLD1 and XLF during lymphocyte development, we analyzed lymphocyte differentiation in Shld1−/− Xlf−/− mice. Strikingly, absolute numbers of thymocytes, total splenocytes as well as splenic B cells and T cells in Shld1−/− Xlf−/− mice were comparable to those of Xlf−/− mice (Fig. 1c, d, Supplementary Fig. 1g, j, and Supplementary Tables 2, 3). In addition, in Shld1−/− Xlf−/− mice, there was no exacerbated block in B cell development in the bone marrow and T cell development in the thymus, particularly at pro-B or DN3 populations in which V(D)J recombination occurs (Fig. 1e–h and Supplementary Tables 1, 3). Together, these results show that SHLD1 is dispensable for lymphocyte development in the sensitized XLF-deficient background.53BP1 displays SHLD1-independent functions during V(D)J recombinationConsistent with the analysis of lymphocyte progenitor populations, semi-quantitative PCR analysis of Dβ1 to Jβ1 and Dβ2 to Jβ2 rearrangements in thymocytes from WT, Shld1−/−, Xlf−/−, and Shld1−/− Xlf−/− mice showed similar levels of rearrangements (Fig. 2a–c and Supplementary Fig. 2a, b). Notably, Dβ1 to Jβ1 and Dβ2 to Jβ2 rearrangements were also robustly detected in 53bp1−/− mice (Fig. 2a–c and Supplementary Fig. 2a, b). We next tested whether SHLD1, similar to 53BP118, might facilitate the joining of more distant V(D)J gene segments. We performed quantitative PCR assays of partial (Dδ2-Jδ1 and Dδ1-Dδ2) and complete (Vδ5-Dδ1 and Vδ2-DδJδ1) rearrangements at the Tcrδ locus (Fig. 2d, e). Consistent with previous findings, we found that short-range (Dδ2-Jδ1 and Dδ1-Dδ2) rearrangements were similar to or even more abundant in 53bp1−/− than in WT thymocytes (Fig. 2d, e). In contrast, long-range Vδ-to-DδJδ recombination was significantly reduced in 53bp1−/− thymocytes (Fig. 2d, e). Strikingly, Shld1−/− thymocytes showed similar levels of rearrangements as WT thymocytes (Fig. 2d, e), demonstrating that SHLD1 is dispensable for long-range V(D)J recombination.Fig. 2: 53BP1 displays SHLD1-independent functions during V(D)J recombination.a Schematic representation of the murine Tcrβ locus. Variable (V), diversity (D), joining (J), and constant (C) segments are shown. The star marks a pseudogene (Jβ2.6). b PCR analysis of Dβ1 to Jβ1 rearrangements in Rag2−/−, WT, Shld1−/−, 53bp1−/−, Xlf−/−, and Shld1−/−Xlf−/− thymocytes. The arrows indicate the region in germline configuration. The bands marked by arrowheads represent rearrangements of Dβ to one of the Jβ segments. Il2 gene PCR was used as a loading control. c PCR analysis of Dβ2 to Jβ2 rearrangements. d Schematic representation of the mouse Tcrα/δ locus with the four different Tcrδ rearrangements depicted individually below. e Relative frequency of Tcrδ locus rearrangements in total thymocytes from WT, Shld1−/− and 53bp1−/− mice. Quantitative assessment of genomic DNA rearrangements of Dδ1 to Dδ2, Dδ2 to Jδ1, and Vδ2 and Vδ5 to (D)Jδ1 genes were performed by qPCR and normalized to the signal of the non-rearranging DNA 3′ of Jδ2. Histograms represent the average relative to WT mice for each rearrangement ± s.e.m., n = 5 independent samples (except 53bp1−/− for which n = 4), two-sided Wilcoxon–Mann–Whitney test (*p = 0.0179). f Schematic of inversional Igk6-23 –J1 rearrangement (position of primers (arrows) used to assay coding joint are shown). g Semi-quantitative nested PCR analysis of Igk6-23 –J1 coding joint (CJ) in v-Abl pro-B cell lines treated for 72 h with ABLki. Il2 gene PCR was used as a loading control. (WT: clone #12095; 53bp1−/−: clone #9999; Shld1−/−: clone #O37; Xlf−/−: clone #16488; Shld1−/−Xlf−/−: clone #XO2-8; Xlf−/−53bp1−/−: clone #9X2). CJ/Il2 ratio of band intensity is indicated below the gel. h Schematic of pMX-INV recombination substrate. i Bar plot showing V(D)J recombination efficiency of pMX-INV recombination substrate in v-Abl pro-B cell lines. v-Abl pro-B cell lines of each genotype were treated with ABLki for 72 h and GFP+ cells were analyzed by flow cytometry. Bars represent mean ± s.e.m., n = 4 independent clones (WT; 53bp1−/−), n = 3 (Shld1−/−), n = 2 (Xlf−/−; Shld1−/− Xlf−/−; 53bp1−/− Xlf−/−), two-sided Wilcoxon–Mann–Whitney test (****p < 0.0001). WT: clones #O38 (n = 4 independent experiments), #GBB (n = 4), #12096 (n = 4) and #12095 (n = 11); 53bp1−/−: clones #9999 (n = 7), #1110 (n = 3), #BP95-2 (n = 3) and #BP95-5 (n = 3); Shld1−/−: clones #O32 (n = 3), #O37 (n = 6) and #O44 (n = 3); Xlf−/−: clones #16488 (n = 10) and #X95-3 (n = 2); Shld1−/−Xlf−/−: clones #XO2-8 (n = 4) and #XO2-24 (n = 6); Xlf−/−53bp1−/−: clones #9X1 (n = 8) and #9X2 (n = 6). n.s. non-significant (p ≥ 0.05), *p < 0.05, ****p < 0.0001. Source data are provided as a Source Data file.Full size imageTo more robustly quantify V(D)J recombination, we generated viral-Abelson kinase (v-Abl) transformed pro-B cell lines from wildtype (WT) and Shld1−/− mice40. Treatment of v-Abl transformed pro-B cells with a v-Abl kinase inhibitor (hereafter named ABLki) leads to G1 cell cycle arrest, the rapid induction of RAG1/2 gene expression, and rearrangement of the Igk locus or introduced V(D)J recombination reporter substrates40. PCR analysis of IgkV6–23-J1 rearrangements revealed normal levels of recombination in Shld1−/− pro-B cells (Fig. 2f and Supplementary Fig. 2c). In addition, quantitative flow cytometry analysis of v-Abl pro-B cells carrying the pMX-RSS-GFP/IRES-hCD4 retroviral recombination substrate (pMX-INV) that allows for GFP expression upon successful chromosomal inversional RAG-mediated recombination revealed similar levels of recombination in WT and Shld1−/− v-Abl cells (Fig. 2h and Supplementary Fig. 2d, e). We next employed CRISPR/Cas9-mediated gene editing to delete Shld1 from WT and Xlf−/− v-Abl pro-B cells38,41, generating Shld1−/− and Shld1−/− Xlf−/− pro-B cell clones. In addition, we deleted Xlf from 53bp1−/− v-Abl pro-B cells21, generating Xlf−/− 53bp1−/− pro-B cell clones. Consistent with the previous work20,21,38,41, both PCR analysis of Igk rearrangements and flow cytometry analysis of pMX-INV recombination revealed robust recombination in XLF-deficient pro-B cells and a severe defect in V(D)J rearrangements in 53BP1/XLF-doubly deficient pro-B cells (Fig. 2f–i and Supplementary Fig. 2e). Strikingly, in contrast to 53BP1/XLF-deficient pro-B cells, SHLD1/XLF-deficient pro-B cells perform robust V(D)J recombination at the Igk locus as well as at the pMX-INV substrate (Fig. 2f–i and Supplementary Fig. 2e). Together, these results demonstrate that SHLD1 is dispensable for V(D)J recombination even in the absence of XLF and that 53BP1 has unique functions during V(D)J recombination that are independent of SHLD1.SHLD1 is required for class switch recombinationTo determine the function of SHLD1 in CSR in vivo, we first measured the serum immunoglobulin levels in unimmunized mice (Fig. 3a). Shld1−/− mice showed normal amounts of serum IgMs but reduced levels of total IgG and IgG1 antibodies, which is suggestive of defective CSR (Fig. 3a). To further test the role of SHLD1 in CSR, we purified splenic B cells and induced them to switch to IgG1, IgG2b, and IgG3 (Fig. 3b, c and Supplementary Fig. 3a–c). We found that SHLD1 deficiency severely compromised the production of IgG1-, IgG2b- and IgG3b-switched B splenocytes to approximately 15% of WT (Fig. 3b, c and Supplementary Fig. 3a–c). CSR defect in SHLD1-deficient B cells undergoing IgM-to-IgG1 switching was also associated with a large population of IgMlow IgG1− B cells, suggesting aberrant AID-DSB repair27 (Fig. 3b, d). Finally, SHLD1 deficiency did not affect cell proliferation (Fig. 3e and Supplementary Fig. 3d), Aid expression and Igh germline transcripts levels (Supplementary Fig. 3e, f). These results indicate that SHLD1 is critical for CSR in mice, supporting our previous findings in CH12 B cell lines32. Notably, 53bp1−/− B cells harbored stronger defects in CSR compared to Shld1−/− B cells (Fig. 3b, c and Supplementary Fig. 3a), suggesting that 53BP1 also fulfills SHLD1-independent functions during CSR.Fig. 3: SHLD1 is required for class switch recombination.a Concentration of indicated isotypes in the serum of 6‐ to 8‐week‐old sex- and aged-matched unimmunized WT, Shld1−/−, Xlf−/−, and Shld1−/−Xlf−/− mice. Horizontal lines show mean, n = 11 independent mice (except Shld1−/− Xlf−/− for which n = 9), two-sided Wilcoxon–Mann–Whitney test, p values are indicated in Source Data file. b Representative dot plots showing IgM and IgG1 expression in WT, Shld1−/−, 53bp1−/−, Xlf−/−, and Shld1−/−Xlf−/− stimulated B cells. c Percentages of WT, Shld1−/−, 53bp1−/−, Xlf−/−, and Shld1−/−Xlf−/− B cells expressing either IgG1 or IgG2b isotype after 4 days of in vitro stimulation with anti-IgD dextran, LPS and IL-4 (IgG1) or LPS (IgG2b). Bars represent mean ± s.e.m., WT (n = 11 for IgG1 and n = 7 for IgG2b), Shld1−/− (n = 11 for IgG1 and n = 8 for IgG2b), 53bp1−/− (n = 4 for IgG1 and n = 2 for IgG2b), Xlf−/− (n = 8 for IgG1 and n = 7 for IgGb2), Shld1−/− Xlf−/− (n = 9 for IgG1 and n = 6 for IgG2b), two-sided Wilcoxon–Mann–Whitney test, p values are indicated in Source Data file. d Percentages of IgM−IgG1+ and IgMlow IgG1− cells. Bars represent mean ± s.e.m., n = 8 (except 53bp1−/− for which n = 4, and Xlf−/− and Shld1−/− Xlf−/− for which n = 6), two-sided Wilcoxon–Mann–Whitney test, p values are indicated in Source Data file. e CTV dilution assay in purified B cells cultured in the presence of anti-IgD dextran, LPS, and IL-4 for 96 h. Representative data, n > 2 mice. f SHLD1 predicted domains and variants used. Mutant 1: L95A, R96A, S98A, L99A, F102A, Y103A; Mutant 2: L125A, I129A, L132A; Mutant 3: Y140A, M147A, V150A, I151A, D155A, F169A; Mutant 4: P186A, G187A, L188A, S189A, D191A, I192A, F195A, L196A, L197A. g CSR assay in Shld1−/− primary B cells complemented with SHLD1 variants. Bars represent the average ± s.e.m. relative to Shld1−/− primary B cells complemented with SHLD1 WT, n = 9 independent experiments (non-complemented cells and Δ1–70), n = 8 (EV), n = 10 (SHLD1 WT), n = 4 (Δ1–60 and Mutant 4), n = 6 (Δ 71–205), n = 2 (Δ18–21), n = 3 (Mutant 1; Mutant 2; Mutant 3; Y103F; K203A), two-sided Wilcoxon–Mann–Whitney test (****p < 0.0001 (vs EV; vs Δ1–70); ***p = 0.001 (vs Δ1–60; vs Mutant 4); ***p = 0.0001 (vs Δ71–205); **p = 0.0035 (vs Mutant 1; vs Mutant 2; vs Mutant 3; vs Y103F)). h Percentages of WT, Shld1−/−, Xrcc4−/− and Shld1−/−Xrcc4−/− B cells expressing either IgG1 or IgG2b isotype after 4 days of in vitro stimulation with anti-IgD dextran, LPS and IL-4 (IgG1) or LPS (IgG2b). Bars represent mean ± s.e.m., WT (n = 6), Shld1−/− (n = 4), Xrcc4−/− (n = 5 for IgG1 and n = 4 for IgG2b) and Shld1−/−Xrcc4−/−(n = 5), two-sided Wilcoxon–Mann–Whitney test, p values are indicated in Source Data file. i Percentages of IgM−IgG1+ versus IgMlow IgG1− cells. Bars represent mean ± s.e.m., n = 6 (WT), n = 4 (Shld1−/−), n = 5 (Xrcc4−/−; Shld1−/−Xrcc4−/−), two-sided Wilcoxon–Mann–Whitney test, p values are indicated in Source Data file. j Percentages of IgM− IgA+ versus IgMlow IgA− CH12 cells after in vitro stimulation with anti-CD40 antibody, IL-4, and TGF-β for the indicated genotypes. Bars represent mean ± s.e.m., n = 4 independent experiments with two clones per genotype, two-sided Wilcoxon–Mann–Whitney test, p values are indicated in Source Data file. n.s. non-significant (p ≥ 0.05), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Source data are provided as a Source Data file.Full size imageTo investigate further the function of SHLD1, we have tested a series of deletion and substitution mutations for their ability to rescue CSR in stimulated Shld1−/− primary B cells (Fig. 3f). SHLD1 is encoded by two exons, exon 2 that encodes for amino acids 1 to 60 and exon 3 that encodes for amino acids 61 to 205. The SHLD1 N-terminus (1–70) is predicted to be intrinsically disordered while its C-terminal part is more structured and may harbor one- or two-winged helix domains32. To investigate the function of the N- and C-terminal regions of SHLD1, we tested WT SHLD1 as well as SHLD1Δ1–60, SHLD1Δ1–70, and SHLD1Δ71–205 deletion mutants (Fig. 3f). In addition, we generated a series of deletion and combined substitution mutations at strongly conserved residues (SHLD1Δ18-21 and SHLD1L95A, R96A, S98A, L99A, F102A, Y103, SHLD1L125A, I129A, L132A, SHDL1Y140A, M147A, V150A, I151A, D155A, F169A, and SHLD1P186A, G187A, L188A, S189A, D191A, I192A, F195A, L196A, L197A referred to as mutants 1, 2, 3, and 4, respectively (Fig. 3f, and Supplementary Fig. 4a). We found that SHLD1Δ1-60 and SHLD1Δ1-70 partially restored CSR in stimulated Shld1−/− cells while SHLD1Δ71-205 and any of the tested SHLD1 proteins mutated for highly conserved residues in the C terminus failed to rescue CSR in stimulated SHLD1-deficient B cells (Fig. 3g). Of note, we could not detect SHLD1Δ71-205 by Western Blot suggesting that this mutant form of SHLD1 is unstable (Supplementary Fig. 4b). In contrast, SHLD1Δ18-21 restored CSR to levels equivalent to those measured after complementation with WT SHLD1 indicating that these four amino acid residues, recently implicated in CTC1-STN1-TEN1 (CST)-Polα-primase binding42, are dispensable for CSR (Fig. 3g). Together, these results show that the C-terminal (i.e., amino acids 71 to 205) portion of SHLD1 forms the core region of SHLD1 that is required for CSR. Finally, we generated substitution mutations at residues Y103 (SHLD1Y103F) and K203 (SHLD1K203A) that are invariably conserved in diverse species and represent potential phosphorylation and ubiquitylation sites, respectively43. We found that SHLD1K203A fully rescued CSR in SHLD1-deficient B cells. By contrast, SHLD1Y103F only partially restored IgG1 class switching suggesting that this residue might be implicated in SHLD1 function during CSR. SHLD1Y103F and SHLD1Δ1-70 were still able to interact with REV7/MAD2L2 (Supplementary Fig. 4b), suggesting that the Y103 residue and the SHLD1 N-terminus are dispensable for SHLD1 binding to upstream SHLD complex components.53BP1-SHLD and NHEJ synergize during class switch recombinationWe next investigated potential synergistic or epistatic functions between SHLD1 and XLF during CSR. Strikingly, Shld1−/− Xlf−/− mice displayed a significant increase of serum IgMs as compared to wildtype and single mutant mice that was associated with an almost complete lack of total IgG and IgG1 antibodies, indicating that CSR is highly defective in SHLD1/XLF-deficient activated B cells (Fig. 3a). Consistent with this, class switching to IgG1, IgG2b and IgG3 was almost completely abrogated in SHLD1/XLF-deficient stimulated splenic B cells (Fig. 3b, c and Supplementary Fig. 3a, b) without noticeable defects in cell proliferation, Aid expression, and Igh germline transcripts levels (Fig. 3e and Supplementary Fig. 3d–f). In addition, defective CSR in Shld1−/−, Xlf−/−, and Shld1−/− Xlf−/− splenic B cells induced to switch to IgG1 was associated with a large population of IgMlow IgG1− B cells that inversely correlated with the levels of switched IgG1+ cells in the respective mutant cells (Fig. 3b, d). Together, these results demonstrate that SHLD1 and XLF act synergistically to promote productive CSR.To probe the capacity of SHLD1 to promote CSR in the absence of XRCC4, another NHEJ factor, we generated SHLD1-proficient and SHLD1-deficient mice that harbored two copies of a loxP-flanked (floxed) Xrcc4 allele (Xrcc4f)44 plus a transgene that drives Cre recombinase expression in late stages of the B lineage from a CD21 promoter45, termed CD21-creTg Xrcc4f/f mice and Shld1−/− CD21-creTg Xrcc4f/f mice respectively. Consistent with previous work46, flow cytometry assays for surface IgG1 and IgG2b revealed substantial switching by appropriately stimulated CD21-creTgXrcc4f/f B cells with average levels of IgG1 and IgG2b that were at about 25% of those of WT controls (Fig. 3h). Similar to SHLD1/XLF-deficient B cells, class switching to IgG1 or IgG2b was significantly diminished in SHLD1/XRCC4-deficient stimulated B cells and was associated with a large population of IgMlow IgG1− B cells (Fig. 3h, i). Thus, SHLD1 supports CSR in the absence of XRCC4.We next investigated the capacity of 53BP1 to promote CSR in the absence of XRCC4. We used CRISPR/Cas9 gene editing to delete Xrcc4 from wildtype, Shld1 knockout, and 53bp1 knockout CH12F3 (CH12) B cell clones, generating Xrcc4−/−, Shld1−/− Xrcc4−/−, and 53bp1−/− Xrcc4−/− B cell clones, respectively. We established that combined loss of SHLD1 and XRCC4 or 53BP1 and XRCC4 almost completely abrogates the production of IgA-switched CH12 cells as measured by flow cytometry after stimulation with anti-CD40, IL-4, and TGF-β (Fig. 3j). Together, these results indicate that 53BP1-SHLD is essential for “productive” CSR—that is the ability of switched cells to express a new immunoglobulin isotype at the cell surface – in both NHEJ-proficient and NHEJ-deficient B cells.SHLD1 promotes productive CSR in XLF-proficient and XLF-deficient cells by limiting DNA end resectionThe most severe CSR defect of B cells deficient for SHLD1 and XLF could be due to a lack of repair of AID-induced DSBs or, as another non-mutually exclusive possibility, to hyper-resection leading to deletions of coding or regulatory regions essential for the expression of a functional switched immunoglobulin. To distinguish between these possibilities, we first measured the levels of Igh-DSBs by performing Igh locus-specific DNA–FISH on chromosome spreads prepared from wildtype, Shld1−/−, Xlf−/−, and Shld1−/− Xlf−/− splenic B cells stimulated to undergo IgM-to-IgG1 class switching (Fig. 4a). Analysis of metaphase spreads revealed low levels of Igh locus-associated chromosomal breaks in WT B cells (1.2%). Xlf−/− and Shld1−/− B cells contained a statistically significant increase in aberrant metaphases (4.1% and 9.4% respectively) that could reflect either a slower repair or a partial lack of repair of AID-induced DSBs in these cells (Fig. 4a, b and Supplementary Table 4). Interestingly, despite an almost complete absence of IgG1 switched cells 4 days after stimulation, Xlf−/− Shld1−/− B cells contained similar levels of Igh-associated chromosomal breaks (8.8%) as SHLD1 single-deficient cells (Fig. 4b). Similarly, metaphase spreads from Shld1−/− CD21-creTg Xrcc4f/f stimulated B cells contained approximately the same level of Igh-associated chromosomal breaks as metaphases from Shld1−/− B cells (Supplementary Fig. 5a, b and Supplementary Table 5). These results indicate that, in the absence of both NHEJ (i.e. XLF or XRCC4) and SHLD1, AID-induced DSBs might be aberrantly resolved, leading to the generation of unproductive switched-joins, rather than accumulating in the form of unrepaired DNA breaks.Fig. 4: SHLD1 promotes functional CSR in XLF-proficient and XLF-deficient cells by limiting DNA end resection.a Representative images of Igh breaks in aberrant metaphases, as quantified in b. Scale bars, 3 μm. b Quantification of Igh breaks (clear bar) and translocations (filled bar) in metaphases of WT, Shld1−/−, Xlf−/−, and Shld1−/−Xlf−/− cells. Bars represent means. n = 1005 (WT), n = 1075 (Shld1−/−), n = 1201 (Xlf−/−), n = 1000 (Shld1−/− Xlf−/−), two-sided Fisher’s exact test from four independent experiments (****p < 0.0001). See also Supplementary Table 4. c Schematic representation of the murine Igh locus. Arrows indicate primers used for the long-range PCR. d Long-range PCR analysis of Sμ to Sγ1 rearrangements in WT, Xlf−/−, Shld1−/−, and Shld1−/−Xlf−/− stimulated B cells. Il2 gene PCR was used as a loading control. e Normalized coverage of the mapped PacBio reads in WT, Shld1−/−, Xlf−/−, and Shld1−/− Xlf−/− stimulated B cells. Vertical dashed lines indicate the Sμ switch region and vertical lines indicate the Sγ1 region. f Distribution of read length (in bp) in WT, Shld1−/−, Xlf−/−, and Shld1−/− Xlf−/− cells. n = 3 independent samples. For all boxplots: minima is minimum value, maxima is maximum value, center is median and quartiles shown by box and whiskers, and cross is mean. n.s. non-significant (p ≥ 0.05), ****p < 0.0001. Source data are provided as a Source Data file.Full size imageTo analyze AID-mediated recombining products, we extracted genomic DNA from stimulated splenic B cells and adapted a long-range PCR assay to amplify a region between the Igh intronic enhancer iEμ (primer EμF) and the Igh γ1 constant exon 6 (primer Cγ1R2) (Fig. 4c). The EμF and Cγ1R2 primers locate more than 100 kb apart and therefore do not allow amplification of the genomic sequence in the germline configuration or after AID-mediated inversional recombination between the Sμ region and the Sγ1 region. Amplification of genomic DNA from stimulated WT splenic B cells generated a clear band whose size corresponds to the expected deletional recombination products between the Sμ region and the Sγ1 region (i.e., from 7160 bp to 16,760 bp product sizes) (Fig. 4d). Amplification of genomic DNA from Xlf−/− and Shld1−/− B cells generated a weaker band of the expected recombination size that is consistent with the reduced percentage of IgG1+ cells in these cells and, instead, produced smaller PCR fragments that might correspond to resection of DNA ends prior to joining (Fig. 4d). The proportion of small PCR fragments was quite similar in SHLD1 knockout samples and 53BP1 knockout samples and greater than in XLF knockout samples (Fig. 4d and Supplementary Fig. 5c). Most strikingly, Shld1−/− Xlf−/− B cells harbored recombination products of various sizes that could be visualized as a smear on the agarose gel and that suggest intense resection of AID-induced DSBs in these cells (Fig. 4d and Supplementary Fig. 5c). To confirm these results, we sequenced PCR products obtained from wildtype and mutant B cells using long-read high-throughput sequencing to analyze hundreds of individual sequences from each genotype (Fig. 4e). This analysis revealed that in WT B cells the vast majority of the sequences corresponded to recombination products with 5′ and 3′ breakpoint sites mapping within the Sμ core region and the Sγ1 core region (Fig. 4e) with a mean read length of 8625 bp and with 15.6% of the reads being smaller than 7160 bp, which correspond to recombination products that suffered intense resection of DNA ends prior to joining (Fig. 4e, f and Supplementary Table 6). XLF-deficiency led to the generation of smaller recombination products (mean read length = 7035 bp) with 46.8% of the reads smaller than 7160 bp (Fig. 4e. f and Supplementary Table 6). Most strikingly, SHLD1-deficient B cells contained switched products with 66.4% of the reads smaller than 7160 bp in Shld1−/− B cells (mean length = 5478 bp) and 85.3% of the reads smaller than 7160 bp in Shld1−/− Xlf−/− B cells (mean length = 4175 bp) (Fig. 4e, f and Supplementary Table 6). Thus, SHLD1 promotes productive CSR in XLF-proficient and XLF-deficient B cells by antagonizing and controlling the extent of DNA end resection.ATM plays a dual role in CSR by promoting 53BP1-RIF1-SHLD assembly at AID-induced DSBs and participating in CtIP-mediated nuclease activities that contribute to DNA end resection. To test the impact of ATM ablation in the context of SHLD1 deficiency, we bred our Shld1−/− mice with Atm−/− mice38,47 to generate doubly deficient animals. Shld1−/− Atm−/− mice were born at expected frequencies and displayed no additional deleterious developmental or immune phenotype compared with Atm−/− mice (Supplementary Fig. 6a–d), indicating that Atm and Shld1 are epistatic during development and for immune functions such as V(D)J recombination. Analysis of class switching to IgG1 and IgG2b in stimulated naive B cells revealed similar levels of class switching in Shld1−/− Atm−/− cells as compared to Atm−/− and Shld1−/− cells (Supplementary Fig. 6e). Although not statistically significant, we noticed a small increase in the percentage of switched cells in Shld1−/− Atm−/− as compared to Shld1−/− cells, suggesting that ATM deficiency might improve the production of functional joins in SHLD1-deficient B cells rather than aggravate it, possibly by dampening DNA end resection in these cells. Long-range PCR analysis of recombining products recovered from stimulated Shld1−/− Atm−/− splenic B cells showed that the loss of ATM in SHLD1-deficient cells partially restored high molecular weight PCR products in SHLD1-deficient B cells (Supplementary Fig. 6f), indicating that ATM might promote end resection in SHLD1-deficient B cells. Consistent with this, inhibition of the ATM kinase activity in stimulated SHLD1-deficient splenic B cells substantially restored CSR levels and high molecular weight recombination products (Supplementary Fig. 6g, h).SHLD1 deficiency and long DNA end resection leads to unbiased directional joining during CSRCSR is programmed to occur in a productive deletional orientation through a Cohesin-mediated loop extrusion mechanism that juxtaposes AID-initiated DNA ends within donor and acceptor S-regions for deletional CSR14,48. Deletional repair of AID-induced DSBs at the Igh locus is dependent on 53BP1 as residual junctions from 53BP1-deficient cells display a more normalized ratio of deletional versus inversional end-joining14. To test the potential role of SHLD1 in orientation-specific CSR, we used high-throughput genome-wide translocation sequencing (HTGTS), a linear amplification-based method that identifies “prey” DSB junctions to a fixed “bait” DSB with nucleotide resolution to simultaneously quantify end resection, microhomology (MH) usage and orientation of AID-generated DNA end-joining between the 5′ region of Sμ (the bait) and the downstream core Sγ1 region (the prey)13,14,48 (Fig. 5a). For this study, we analyzed >5,000 junctions from three independent mice of each wildtype, Shld1−/−, Xlf−/−, and Shld1−/− Xlf−/− genotype. Results from these experiments were highly reproducible (Fig. 5b, c and Supplementary Fig. 7).Fig. 5: SHLD1 deficiency and long DNA end resection leads to unbiased directional joining during CSR.a Illustration of activation of CSR in normal B cells stimulated with anti-IgD dextran/LPS/IL-4 which induces AID and activates transcription of Iγ1. Deletional CSR events are indicated with a blue arrow and inversional recombination events are indicated with a red arrow. Intra-switch recombination events are indicated with a dotted line. b CSR-HTGTS-seq analysis of break joining between 5′Sμ and downstream acceptor S-regions in WT, Shld1−/−, Xlf−/−, and Shld1−/−Xlf−/− splenic B cells stimulated with anti-IgD dextran/LPS/IL-4. The blue line indicates deletional joining, and the red line indicates inversional joining. c Zoom-in view of CSR-HTGTS-Seq junctions located in the AID-targeted ectopic Sγ1 region from WT, Shld1−/−, Xlf−/−, and Shld1−/−Xlf−/− cells. Junctions are plotted at 200 bp bin size. d Bar graph showing percentages of junctions located in Sμ and Sγ1 regions from WT, Shld1−/−, Xlf−/−, and Shld1−/−Xlf−/− splenic B cells stimulated with anti-IgD dextran/LPS/IL-4. Data represent mean ± s.e.m. from three independent repeats. e Microhomologies (MH) usage of Sμ-Sγ1 junctions, plotted as a percentage of total junctions. n = 3 independent samples. f, g Percentages of Sμ-Sγ1 direct joins in f and Sμ-Sγ1 joins with 4-bp or longer MH in g in the different genetic backgrounds are compared. Bars represent mean ± s.e.m. n = 3 independent samples, unpaired two-tailed t-test, p values are indicated in Source Data file. h Percentage of resection at the Sγ1 region in the different genetic backgrounds as indicated. Bars represent mean ± s.e.m., n = 3 independent samples, unpaired two-tailed t-test, p values are indicated in Source Data file. i Inversional/deletional joining ratio at the Sγ1 region in the different genetic background as indicated. Bars represent mean ± s.e.m., n = 3 independent samples, unpaired two-tailed t-test, p values are indicated in Source Data file. n.s. non-significant (p ≥ 0.05), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Source data are provided as a Source Data file. j Working model for the specific roles of 53BP1 and components of the SHLD complex in antigen receptor gene diversification. The 53BP1-dependent chromatin response acts independently of SHLD to promote chromosome structural changes that are essential for long-range V(D)J recombination and CSR as well as for RAG-DSB repair in the context of an unstable post-cleavage complex (i.e., XLF-deficient cells) (left panel), while the 53BP1-SHLD axis limits resection at AID-induced DSB ends, providing an end-protection mechanism that permits productive CSR by NHEJ and alt-NHEJ (right panel).Full size imageConsistent with class switching levels in these cells, XLF-deficient B cells, SHLD1-deficient B cells, and SHLD1/XLF-deficient B cells had reduced Sγ1 junctions compared to wild-type B cells with Shld1−/− Xlf−/− cells having the most dramatic decrease in Sμ-Sγ1 joins (Fig. 5b–d). In WT cells, breakpoint junctions are almost exclusively located in S-regions with a very small fraction of the Sγ1 breakpoint sites being outside the core Sγ1 region (0.45%) and corresponding to long resection14 (Fig. 5c). Junctions were approximately 30% direct, with most of the others using 1 bp to 3 bp of MH and a small fraction (11%) using longer MHs (Fig. 5e–g). In agreement with previous studies in NHEJ-deficient cells13,49,50, XLF-deficient B cells had a marked increase in MH-mediated Sμ–Sγ1 junctions, with about 17% being direct and a correspondingly increased fraction of MH-mediated junctions (MH >3 bp = 21%), indicating increased use of alternative end-joining in these cells9,10. In addition, in XLF-deficient B cells, a small but significantly increased fraction of Sμ–Sγ1 junctions harbored long resection (6%). Consistent with results from long-range PCR, SHLD1-deficient B cells had greater long resection increases (23%) and SHLD1/XLF-deficient B cells far greater increases (36%) that were also apparent as a ‘flattening’ of Sγ1 junction profile relative to other backgrounds (Fig. 5c, h). Notably, MHs were also significantly more present and longer at junctions recovered from SHLD1-deficient and, to a greater extent, SHLD1/XLF-deficient B cells (Shld1−/− cells: direct joints = 15%, MH >3 bp = 29%; Shld1−/− Xlf−/− cells: direct joints = 6%, MH >3 bp = 37%) as compared with XLF-deficient and wild-type B cells (Fig. 5e–g). Thus, SHLD1 restricts end resection and controls microhomology-mediated alternative end-joining of AID-initiated DSBs in both NHEJ-proficient and NHEJ-deficient B cells.Remarkably, SHLD1-deficient B cells displayed a profound defect in orientation-specific joining (Fig. 5i), as observed in 53BP1-deficient cells14,50. Compared to wild-type B cells, where Sμ–Sγ1 recombination occurs predominantly by deletion (>95%), in Shld1−/− B cells deletions and inversions were present at 70 and 30%, respectively (Fig. 5i). In Shld1−/− Xlf−/− B cells, deletions and inversions were present at nearly equal frequencies (57 vs 43%) (Fig. 5i). This normalization of the orientation ratios correlated with the level of DNA end resection in these two B cell types (Fig. 5h), suggesting that, in the absence of SHLD1, exacerbated resection hinders orientation-specific CSR. In support of this and in agreement with previous work in NHEJ-deficient cells13,14,50, XLF deficiency, which has a much less severe impact on CSR than SHLD1 deficiency and does not promote nearly the same degree of long S resections, also moderately impacted orientation-specific CSR (87 deletion vs 13% inversion). Altogether, these results suggest that the extent of AID-DSB end resection impacts orientation-specific CSR.DiscussionThe SHLD complex acts downstream of 53BP1-RIF1 to counteract DSB end resection and promote NHEJ, a DSB repair pathway essential for V(D)J recombination and CSR. Here we find that SHLD1 is dispensable for lymphocyte development and V(D)J recombination, but does however play an essential role in ensuring productive CSR in B cells. We propose a model in which 53BP1 promotes antigen receptor gene diversification through two distinct mechanisms. First, the 53BP1-dependent chromatin DSB response acts independently of SHLD to promote chromosome structural changes that are essential for CSR, long-range V(D)J recombination, and RAG-DSB repair in the context of an unstable post-cleavage complex (i.e., XLF-deficient cells). Second, the 53BP1-SHLD axis limits resection at AID-induced DSB ends, providing an end-protection mechanism that permits productive CSR by NHEJ and alt-NHEJ (Fig. 5j).Contrary to 53bp1−/− mice that display mild lymphopenia (16,17,18,30 and this study), we find that Shld1−/− mice harbor normal numbers of B and T cell populations in lymphoid organs. Shld2−/− mice27 and REV7-deficient animals30 also show normal lymphocyte differentiation, suggesting that all components of the SHLD complex are dispensable for lymphocyte differentiation and V(D)J recombination. These results imply that RAG-generated DSB ends do not require SHLD protection against resection prior to joining. Consistent with this, we find that Shld1−/− Xlf−/− mice support lymphocyte development and Shld1−/− Xlf−/− lymphocytes perform RAG-induced DSB repair at levels similar to those observed in Xlf−/− lymphocytes. This is again in striking contrast to the severe combined immunodeficiency phenotype observed in 53bp1−/− Xlf−/− animals and the accumulation of resected RAG-induced DSB ends observed in 53bp1−/− and 53bp1−/− Xlf−/− progenitor lymphocytes18,20,21.Why is the SHLD complex, contrary to 53BP1, dispensable for RAG-induced DSB repair? Specific features of the V(D)J recombination reaction might provide clues to this question2,51. First, the RAG-cleavage and repair steps of the reaction are coupled, possibly limiting fortuitous end resection events. Second, RAG-generated DSB end structures are prone to repair by NHEJ, which means that hairpin-sealed coding ends are open, processed, and repaired by NHEJ and blunt signal ends require minimal end-processing prior to ligation by LIG4. Third, RAG-cleavage occurs in a very strict G1 environment that offers limited end resection activities. Additionally, during V(D)J recombination, ATM and downstream chromatin DSB response factors such as H2AX and 53BP1 contribute to DSB end-tethering and synapsis, a function that is thought to be redundant with XLF19. Functional compensation for DSB end-tethering/synapsis in the absence of XLF may also reside in additional post-cleavage complex proteins including RAG38, MRI52, and ERCC6L250. In addition, XLF-deficiency is largely compensated by PAXX during end-joining41,53,54. Thus, even in the absence of XLF, RAG-generated DNA ends benefit from robust end-joining as well as a chromatin environment that alleviates the need for SHLD to limit resection. Our finding that Shld1−/− Xlf−/− mice do not suffer developmental growth defects, as opposed to 53bp1−/− Xlf−/− mice20,21, Atm−/− Xlf−/− mice22, or H2ax−/− Xlf−/− mice22, indicates that the ATM-H2AX-53BP1-mediated chromatin DSB response also supports important SHLD-independent functions during mammalian development.Two distinct features of 53BP1 explain its essentiality for CSR; the ability to form stable oligomeric assemblies at DSB sites and the faculty to protect DNA ends against resection mediated by RIF1 and components of the SHLD complex23,24. It has been proposed that tetramerization (and higher-order assembly) of 53BP1 might provide a tethering activity to bridge and stabilize distally located DNA ends such as in the case of AID-induced DSBs in donor and acceptor switch regions and RAG-induced DSBs in distant V(D)J segments23,24. Notably, mutations that interfere with 53BP1 higher-order oligomer formation abrogate CSR without substantially affecting DSB end resection55, suggesting that this function is independent of downstream RIF1-SHLD factors. In agreement with this, we show that 53BP1 knockout splenic B cells have a CSR defect approximately twice as severe as SHLD1 knockout splenic B cells, possibly illustrating the dual property of 53BP1. In addition, we find that recombination of distant V(D)J segments is independent of SHLD1. It was recently reported that DSB end protection might in fact play a limited role in the ability of 53BP1 to support CSR, based on the observation that a mutant form of 53BP1 defective for RIF1 recruitment still supports robust CSR55. Yet, B cells deficient for any component of the SHLD complex as well as for RIF1 display defective CSR27,28,29,30,31,32,33,34,56,57,58. The recent identification of distinct modes of RIF1 and SHLD recruitment at DSBs and action to promote DNA repair might partially explain this discrepancy59.We find that murine Shld1−/− B cells are defective for CSR due to unbiased orientation-joining of AID-DSBs and extensive DSB end resection in these cells. Inversional recombination leads to non-productive CSR as constant region coding sequences downstream of the donor Sμ region would be inverted and incapable of being translated14. Overactive resection also leads to non-productive CSR due to the loss of coding exons in the downstream acceptor constant region27.Orientation-specific CSR is known to be dependent on 53BP114 which could reflect the two aforementioned aspects of 53BP1: (1) a specialized structural role in promoting synapsis and stabilization of S-regions and/or (2) the ability to limit DNA end resection and promote rapid DNA repair, thus preventing the lingering of S-region broken ends within resection complexes and the loss of their orientation-specific joining properties. Interestingly, treatment of 53BP1 knockout activated B cells with an ATM kinase inhibitor substantially diminishes long S-region resections but does not restore orientation-dependent joining14, illustrating the intrinsic capacity of 53BP1 to promote orientation-specific CSR, possibly through stabilization of synapsed S-regions. However, as SHLD1 exerts its function at the very tip of the 53BP1-RIF1-SHLD axis when loaded onto ssDNA with SHLD232, it is unlikely that its loss, per se, affects 53BP1 function in stabilizing DSBs. In support of this, SHLD1 loss does not perturb the accumulation of 53BP1 and RIF1 at DNA damage sites28,32. In addition, silencing of SHLD2 or SHLD3 does not affect the topological stabilization of DSB-flanking chromatin initiated by the formation of 53BP1 nano-domains60. Finally, we show that SHLD1 does not promote long-range V(D)J recombination, that is thought to rely on the ability of 53BP1 to facilitate chromosome synapsis18. Thus, we suggest that the loss of orientation-specific AID-DSB end-joining in SHLD1 knockout B cells is a result of excessive DNA end resection rather than a direct effect on the 53BP1-dependent chromatin DSB response. As Cohesin-mediated loop extrusion has been identified as a major mechanism enforcing deletional rearrangements during CSR48,61, one possible mechanistic explanation comes from the observation that although Cohesin has comparable affinities for single-stranded (ss) and double-stranded (ds) DNA, ssDNA binding is labile and topologically entrapped ssDNA can easily be lost from the Cohesin ring62. In addition, RPA can compete with Cohesin for ssDNA capture62 and thus could theoretically perturb Cohesin functions during DNA recombination. Thus, we speculate that in the absence of SHLD protection, very long stretches of ssDNA and/or RPA-coated ssDNA might interfere with Cohesin-driven loop extrusion of activated S-regions, leading to the defective orientation-specific joining of AID-induced DSBs. In support of this idea, we find that the extent of DNA end resection measured in XLF-, SHLD1- and SHLD1/XLF-deficient B cells correlates with the levels of inversional recombination in these cells.SHLD acts in a paradoxical manner to hinder DNA end resection, as the complex forms at DSB ends through the interaction of SHLD2 with >50 nt-long ssDNA28,31,32,63. AID-generated DSBs or at least a fraction of them are predicted to contain either 5′ or 3′ overhangs of variable lengths that offer an ideal substrate for SHLD. By protecting AID-DSB ends against resection, we propose that SHLD permits ssDNA processing and end-joining—by NHEJ or alt-NHEJ—to take place within switch regions, leading to productive CSR. The proliferative nature of switching B cells might also account for the need to protect AID-DSB ends, specifically in the S/G2-M phase where there is more extensive DNA end resection64. In that regard, while NHEJ dominates in G1, alt-NHEJ acts predominantly in S-G2/M where it is associated with extensive resection and frequent microhomologies at junctions9,64,65,66. Thus, SHLD-mediated DNA end protection might become increasingly essential for productive CSR in NHEJ-deficient cells that rely on alt-NHEJ for the repair of AID-DSBs. Consistent with this, we find that while NHEJ-proficient SHLD1 knockout B cells still perform substantial CSR (approximately 15% of WT cells depending on the switched isotype), XLF or XRCC4 knockout B cells strictly rely on SHLD1 to perform CSR with an almost complete absence of functional switched products (i.e. those harboring breakpoint junctions within switched regions) in activated XLF/SHLD1- or XRCC4/SHLD1-deficient B cells. End-joining is however not abolished in these cells as we find that activated NHEJ/SHLD1-deficient B cells contain numerous non-functional switched products containing very long resection and microhomologies at the junctions. Thus, we propose that by limiting the action or the kinetics of the resection machinery(ies), the 53BP1-SHLD axis does not simply promote NHEJ but ensures the fidelity of both NHEJ and alt-NHEJ pathways to permit productive CSR in rapidly dividing activated B cells. This model is consistent with previous work suggesting that 53BP1 acts primarily to ensure the fidelity of DSB repair24,67. In this view, the dynamic nature of SHLD complex assembly and disassembly would be an important parameter to allow for multiple DSB repair machineries to accurately process and join DSB ends56,68,69. The nature of the alt-NHEJ pathway acting during CSR remains to be fully established10,11,23. First, alt-NHEJ associated with relatively short-resection tracks in NHEJ-deficient B cells might differ from alt-NHEJ associated with extensive resection in SHLD/NHEJ-deficient cells. Second, distinct alt-NHEJ sub-pathways might operate depending on the type of NHEJ deficiency present in the cell. For instance, CSR products recovered from Ku-deficient B cells differ from those recovered from XRCC4- or Lig4-deficient cells70. In that regard, Rad52 competes with Ku for S-region DSB end binding in wild-type cells and promotes CSR in Ku80 knockdown B cells71. Interestingly, Rad52 also mediates IgD CSR by microhomology-mediated alternative end-joining72. Whether the SHLD complex is important for Rad52-dependent CSR remains to be fully investigated. Regardless of the nature of alt-NHEJ, our findings predict that the SHLD complex promotes its fidelity for the benefit of productive CSR. SHLD1 being the most recently evolved component of the DSB response apparatus that co-emerged with CSR in vertebrates29, it thus could have provided an ultimate evolutionary-selected brick to a complex protein network that led to the emergence of antibody class switching.MethodsMiceShld1+/− Xlf−/− mice were bred with Shld1+/− Xlf−/− mice, and Shld1−/− Xlf+/− with Shld1−/− Xlf+/− to generate doubly deficient mice. Shld1−/− Xrcc4f/f mice were crossed to Shld1−/− CD21-creTg Xrcc4f/+ to generate Shld1−/− CD21-creTg Xrcc4f/f mice. Genotyping of these mutants was performed by PCR of tail DNA. Potential CRISPR/Cas9 off-targets in Shld1−/− mice were assessed by PCR of B cells genomic DNA and sequencing (see Supplementary Table 7 for primers sequences). The Xlf−/− 39, Atm−/− 47, 53bp1−/− 73, Xrcc4f/f 44, and CD21-CreTg 45 mice were used in previous studies. Mice were bred under specific-pathogen-free (SPF) conditions and housed at ambient temperature and humidity with 12 h light/12 h dark cycles. In all experiments, 6–17-week-old sex- and age-matched littermates were used. Mice euthanasia was performed by carbon dioxide exposure. All experiments were performed after authorization was granted by the institutional animal care and ethical committee of Institut Pasteur/CETEA n°89 under protocol numbers 180006/14778.Lymphocyte developmentLymphocyte development was analyzed in the thymus, bone marrow, and spleen from 6- to 17-week-old sex- and age-matched mice. All single-cell suspensions were treated with Fc-blocking antibody (CD16–32, BD Biosciences 553142, clone 2.4G2, 1:200 dilution) before cell surface staining, which was performed in phosphate-buffered saline (PBS) with 2% fetal bovine serum for 20 min at 4 °C. Bone marrow B lineage cell populations were identified based on the expression of the following markers: pro-B (B220lo CD43+ CD19+ IgM−), pre-B (B220lo CD43− CD19+ IgM−), immature B cells (B220lo IgM+), recirculating B cells (B220hi IgM+). T lineage cell populations from the thymus were identified based on the expression of the following markers: double-negative (DN) cells (CD4−CD8−), DN1 (CD4−CD8−CD44+CD25−), DN2 (CD4−CD8−CD44+CD25+), DN3 (CD4−CD8−CD44−CD25+), DN4 (CD4−CD8−CD44−CD25−), double-positive (DP) cells (CD4+CD8+) and single-positive (SP) cells (CD4+CD8− and CD4−CD8+). Lymphocytes from the spleen were identified based on the expression of the following markers: total B cells (CD19+IgM+), Marginal Zone B cells (B220+CD93−CD23−CD21high), Follicular B cells (B220+CD93−CD23+CD21+), and T cells (CD3+TCRβ+). The following antibodies were used for cell surface staining: anti-B220 (557669, clone RA3–6B2, 1:200 dilution), anti-CD43 (553271, clone S7, 1:150 dilution), CD19 (560375, clone 1D3, 1:200 dilution), anti-IgM (552867, clone R6–60.2, 1:150 dilution), anti-CD93 (558039, clone AA4.1, 1:200 dilution), anti-CD23 (562929, clone B3B4, 1:200 dilution), anti-CD21 (561770, clone 7G6, 1:500 dilution), anti-CD4 (553048, clone RM4–5, 1:200 dilution), anti-CD8a (557668, clone 53–6.7, 1:200 dilution), anti-CD3e (553066, clone 145-2C11, 1:200 dilution), anti-CD44 (560451, clone IM7, 1:200 dilution), anti-CD25 (552880, clone PC61, 1:200 dilution), and anti-TCRβ (47-5961-82, clone H57–597, 1:200 dilution). All antibodies were purchased from BD Biosciences except anti-TCRβ, which was from eBiosciences. Flow cytometry was performed on a FACS Fortessa (BD Bioscience) and data were analyzed using FlowJo v10.4.2 (TreeStar). The gating strategy is provided in Supplementary Fig. 8.Generation and culture of v-Abl transformed pro-B and CH12 cell linesv-Abl pro-B cell lines were generated as previously described40. Briefly, total bone marrow from WT and Shld1−/− 7-week-old mice was cultured and infected with a retrovirus encoding v-Abl kinase to generate immortalized pro-B cell lines40. v-Abl transformed pro-B cell lines were then transduced with pMSCV-Bcl2-puro retrovirus40 to protect them from v-Abl kinase inhibitor-induced cell death. v-Abl pro-B cells were maintained in RPMI 1640 (Gibco 61870044) supplemented with 10% fetal bovine serum (Sigma F6178), penicillin (100 U/ml)/streptomycin (100 μg/ml) (Gibco) and 50 μM 2-mercaptoethanol (Gibco 11528926).CH12 cells were cultured in RPMI 1640 supplemented with 12% FBS (Sigma F6178), penicillin (100 U/ml)/streptomycin (100 μg/ml), 50 μM 2-mercaptoethanol, 1x MEM nonessential amino acids (Gibco 12084947), 1 mM sodium pyruvate (Gibco 11530396), and 10 mM HEPES (Gibco 11560496).CRISPR/Cas9 editing of v-Abl pro-B and CH12 cell linesv-Abl pro-B and CH12 knockout cell clones were generated as previously described32,40,41. Briefly, cells were nucleofected with two sgRNA-encoding plasmids and the pCas9-GFP plasmid (see Supplementary Table 7 for sgRNAs sequences) using an Amaxa Nucleofector and Nucleofector Kit V solution (Lonza). Electroporated cells were left to recover for 36–48 h and single cells expressing GFP were sorted in 96-well plates. Clones were then screened by PCR (see Supplementary Table 7 for primers sequences), and purified PCR products were Sanger sequenced to identify CRISPR/Cas9-induced deletions and insertions at the cleavage site (see Supplementary Table 8). Knockout clones were then validated by Western blot (Supplementary Fig. 9).V(D)J recombination assayV(D)J recombination assays were performed as previously described38,40. Briefly, v-Abl pro-B cells were transduced with pMX-INV retroviral vector and cells that had integrated the recombination substrate were enriched based on hCD4 expression using hCD4 Microbeads (Miltenyi 130-045-101). Purified v-Abl infected pro-B cells (106 per ml) were treated with 3 μM of the v-Abl kinase inhibitor STI571 (Novartis) for 72 h and assayed for rearrangement levels by FACS analysis of GFP/hCD4 expression (hCD4-PE antibody, Miltenyi 130-113-254, clone M-T466, 1:100). V(D)J recombination efficiency was scored as the percentage of GFP-positive cells among hCD4-positive cells. FACS data was acquired by FACS Diva v8.0.1 (BD Biosciences) and analyzed and visualized by Flowjo v10.4.2 (TreeStar). The gating strategy is provided is Supplementary Fig. 8.PCR analysis of endogenous Igk rearrangementsEndogenous Vk6-23/Jk1 coding joints were amplified as previously described38,74. 500 ng of genomic DNA was amplified using pkJa2 and pk6c primers. The following parameters were used: 1× (95 °C 5 min); 17× (94 °C 30 s, 60 °C 30 s, and 72 °C 30 s); 1× (72 °C 5 min). Serial fourfold dilutions of this reaction were amplified using pkJa2 and pk6d primers and the following cycles: 1× (95 °C 5 min); 25× (94 °C 30 s, 60 °C 30 s, and 72 °C 30 s); 1× (72 °C 5 min). Il2 gene was amplified using IMR42 and IMR43 primers and was used as a loading control. The PCR gel images were acquired and analyzed using Image Lab v6.0 (Biorad). See Supplementary Table 7 for primer sequences.PCR analysis of TCRβ rearrangements100, 50, and 10 ng of gDNA from thymocytes was amplified using either TCRB-D1US and TCRB-J1D-A (Dβ1–Jβ1), or TCRB-D2US and TCRB-J2D-A (Dβ2-Jβ2). PCR reactions (20 μl) contained genomic DNA template, 0.5 μM of each primer, and 1X Platinum SuperFi II PCR Master Mix (Invitrogen 16445389). The following parameters were used: 1× (98 °C 3 min); 35× (98 °C 45 s, 60 °C 90 s, and 72 °C 150 s); 1× (72 °C 10 min). Il2 gene was amplified using IMR42 and IMR43 primers and was used as a loading control. The PCR gel images were acquired and analyzed using Image Lab v6.0 (Biorad). See Supplementary Table 7 for primer sequences.Quantitative PCR analysis of TCRα/δ rearrangements100 ng of gDNA from thymocytes was amplified with a combination of gene-specific primers (see Supplementary Table 7 for primers sequences). PCR reactions (50 μl) contained genomic DNA template, 0.4 μM of each primer and 1X Power Sybr Green Master Mix (Applied Biosystems 4367659). Quantitative PCR was performed in triplicates and data were collected on a QuantStudio 3 Real-Time PCR System and analyzed using the QuantStudio Design & Analysis Software v2.6.0. For each assay, aliquots of DNA were analyzed for a control, non-rearranging DNA 3′ of Jδ2. The cycle threshold numbers for each primer combinations (Ctexp) and for the control amplification (Ctctr) were used to calculate the absolute amount of PCR signal. The relative ratios of each rearrangement were averaged and plotted together with the standard error of the mean. See Supplementary Table 7 for primer sequences.Ex vivo CSR assaySplenic B cells were purified from 6–17-week-old sex- and aged-matched mice using magnetic CD19 beads according to the manufacturer’s instructions (Miltenyi Biotec 130-121-301). In total, 2.4 × 106 cells were cultured in 4 ml of complete medium consisting of RPMI 1640 supplemented with 12% FBS, penicillin (100 U/ml)/streptomycin (100 μg/ml), 50 μM 2-mercaptoethanol, and incubated at 37 °C in a humidified atmosphere containing 5% CO2. To induce specific isotype switching, B cells were stimulated with either LPS (25 μg/ml, Sigma-Aldrich), IL-4 (10 ng/ml, Miltenyi) and anti-IgD dextran (3 ng/ml, Fina Biosolutions) or anti-CD40 antibody (1 μg/ml, Miltenyi) and IL-4 for IgG1, and LPS for IgG2b and IgG3. Cells incubated with either anti-IgD dextran or anti-CD40 antibody were used as a negative control. After 4 to 5 days, cells were assayed for class switching by flow cytometry using CD19-V450 (BD Biosciences 560375, clone 1D3, 1:200 dilution), B220-A488 (BD Biosciences 557669, clone RA3–6B2, 1:200 dilution), B220-APC (BD Biosciences 553092, clone RA3–6B2, 1:200 dilution), IgG1-APC (BD Biosciences 550874, clone X56, 1:500 dilution), IgG2b-PE (Biolegend 406708, clone RMG2b-1, 1:500 dilution), IgG3-FITC (BD Biosciences 553403, clone R40-82, 1:500 dilution), IgM-PE-Cy7 (BD Biosciences 552867, clone R6–60.2, 1:200 dilution), Thy1.1-BV421 (BD Bioscience 740044, clone HIS51, 1:300 dilution) antibodies and a Fortessa analyzer (BD Biosciences). Data were analyzed by FlowJo v10.4.2 software. The gating strategy is provided in Supplementary Fig. 8. Viable cells were counted using a Casy cell counter (Roche). Where indicated, cells were incubated with DMSO or 2.5μM ATM inhibitor (Calbiochem 118502). For analysis of SHLD1 domains, cells were infected with retroviral-based vectors expressing wildtype and mutant forms of SHLD1 after 1 to 2 days of stimulation. For proliferation analysis by in vitro cell labeling, purified B cells were stained at 5 × 106 cells/mL in PBS with 5μM Cell TraceTM violet (CTV) for 8 min at room temperature (Thermo Scientific 10220455), following the standard protocol with two additional washes with the medium. CTV-stained B cells were incubated for 30 min at 37 °C and then stimulated with LPS, IL-4, and anti-IgD dextran as described above.CSR assay in CH12 cell linesCH12 cells were plated at 50,000 cells per ml in complete RPMI supplemented with anti-CD40 antibody (1 μg/ml, Miltenyi), IL-4 (20 ng/ml, Miltenyi), and TGF-β (1 ng/ml, R&D Biotech) to induce IgM to IgA switching. After 3 days, cells were assayed for class switching by flow cytometry using IgA-PE (eBiosciences 12-4204-82, clone mA-6E1, 1:200) and IgM-PE-Cy7 (BD Biosciences 552867, clone R6–60.2, 1:200 dilution) antibodies, and a Fortessa analyser (BD Biosciences). Data were analyzed by FlowJo v10.4.2 software. The gating strategy is provided in Supplementary Fig. 8.ImmunoprecipitationNuclear extracts were prepared by resuspending 40 million fresh cells in ice-cold 10 ml buffer A (10 mM HEPES pH 7.9, 10 mM KCl, 1.5 mM MgCl2, 0.1% NP-40, protease inhibitors cocktail, phosSTOP) and rotating for 10 min at 4 °C. Nuclei were centrifuged at 800×g for 10 min at 4 °C and resuspended in 1 ml IP buffer C150 (20 mM HEPES pH 7.9, 150 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.25% NP-40, 10% glycerol, protease inhibitors cocktail, phosSTOP). Lysates were briefly sonicated followed by Benzonase (Sigma E8263) digestion for 30 min at 4 °C. Finally, lysates were cleared through centrifugation at 13,000×g for 20 min before incubation with 50 μl of anti-Flag M2 magnetic beads (Sigma M8823) overnight at 4 °C. Beads were washed five times in an IP buffer. Washed beads were directly resuspended in Sample Buffer Laemmli 2x (Sigma S3401), and boiled at 95 °C for 10 min.DNA–FISH on metaphase spreadsDNA–FISH was performed as previously described32,38. Slides were treated with RNase A for 40 min, dehydrated in 70, 90, and 100% ethanol for 3 min each, denatured in 70% formamide/2× SSC for 3 min at 77 °C, dehydrated again in cold ethanol series, and hybridized with probes overnight at 37 °C in a humid chamber. The next day, slides were washed three times in 50% formamide/0.5× SSC for 5 min each at 37 °C and twice in 0.5× SSC for 10 min and 20 min at 37 °C. Finally, slides were mounted in ProLong Gold antifade reagent with DAPI (Invitrogen P36931) to counterstain total DNA. Metaphases were imaged using a ZEISS AxioImager.Z2 microscope and the Metafer automated capture system (MetaSystems) and counted manually. Probes used in this study: Igh C BAC probes (RP24–134G24), Igh V BAC probe (RP24–386J17), and XCyting Mouse Chromosome 12 paint (MetaSystems). Analysis of the percentage of aberrant metaphases was performed using Microsoft Excel v16.16.2.Long-range PCR and sequencingLong‐range PCR of the Ighμ‐Ighγ1 amplicon was accomplished using Platinum SuperFi II polymerase (Invitrogen 16445389). A total of 100 ng of gDNA was amplified using EμF and Cγ1R2 primers and the following cycles: 1× (98 °C 30 s); 30× (98 °C 10 s, 57 °C 10 s, and 72 °C 8 min); 1× (72 °C 5 min). See Supplementary Table 7 for primer sequences.Prior to library preparation, all amplicons were purified using Ampure PB beads at 1.8X and controlled using a Fragment Analyzer with a High Sensitivity gDNA kit. Amplicon Sequencing library was prepared according to the Pacific Biosciences recommendations (protocol version: Part Number 101-791-700 version 06 (January 2021)). We sequenced PCR products obtained from three replicates of wildtype and mutant splenic B cells using long-read PacBio Sequel I technology. For each of them, three replicates were included accounting for a total of 12 samples that were multiplexed in one sequencing run. The resulting sequences were demultiplexed and consensus circular reads (CCS) were constructed using the SMRTLINK software from PacBio (v9) (smrtlink: https://www.pacb.com/support/software-downloads/). Then, CCS reads were converted into FastQ files and mapped onto the Mus musculus genome (reference GRCm38 v92) using minimap275 including PacBio and splicing options. Subsequent bioinformatics analysis of the aligned reads was performed with the Sequana library (BAM file analysis, visualization)76. We filtered out reads that do not align on both 5’ and 3’ sections of the region of interest (chromosome 12, 113,326,440–113,427,620).RT-PCRIgh γ1 and γ3 germline transcripts (GLT) and Aid mRNA expression were assessed as previously described32 by semi-quantitative RT-PCR using 2.5-fold serial dilutions of cDNA from primary cells stimulated for 4 to 5 days with LPS and IL-4, or LPS only. Hprt was used as a control for transcript expression. Primer sequences are listed in Supplementary Table 7.Western blottingPrimary cells were lysed using Cell lysis buffer (10 mM HEPES pH = 7.5, 10 mM KCl, 0,2 mM EDTA, 1 mM DTT, 0,5% NP-40, protease inhibitors cocktail, 300 mM sucrose) and 20 min incubation on ice. Nuclei were centrifuged at 650×g for 10 min at 4 °C and resuspended in Nuclear extraction buffer (20 mM HEPES pH 7.5, 420 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.5% NP-40) for 30 min on ice. Lysates were briefly sonicated and then cleared through centrifugation at 13,000×g for 15 min. CH12 and pro-B cells were lysed using RIPA cell lysis reagent (Thermo Fisher Scientific 89900) and protease inhibitors cocktail (Roche 11873580001). Equal amounts of proteins were subjected to SDS-PAGE on 4–12% Bis-Tris gel (Invitrogen). Proteins were transferred onto a nitrocellulose membrane (Invitrogen) using the iBlot apparatus (P3 program, 7 min transfer, Invitrogen). Membranes were incubated in 5% non-fat dried milk in TBS containing 0.1% Tween-20 buffer for at least 1 h at room temperature and subsequently incubated overnight at 4 °C with primary antibody (SHLD1: Thermo Fisher Scientific PA5-559280, 1:200; XLF: Bethyl Laboratories A300-729A, 1:1000; 53BP1: Novus Biologicals NB100-304, 1:1000; MAD2L2: Protein Tech 12683-1-AP, 1:500; FLAG: Protein Tech 20543-1-AP, 1:2000). γ-Tubulin (Sigma-Aldrich T6557, clone GTU-88, 1:10000) or Lamin B (Abcam 16048, 1:2000) was used as a loading control. HRP-conjugated anti-mouse secondary antibody (Cell Signaling Technology 7076, 1:10000) or HRP-conjugated anti-rabbit secondary antibody (Cell Signaling Technology 7074, 1:5000) were used. Immune complexes were detected with Clarity Western ECL Substrate (Biorad 170-5060) or WesternBright Sirius substrate (Advansta K12043-D10). Blots were developed and analyzed using Image Lab v6.0 (Biorad). For XRCC4 blots, the membranes were incubated in Intercept (TBS) Blocking Buffer (LI-COR) for 1 h at room temperature and incubated successively with XRCC4 (Santa Cruz sc-8285, clone C20, 1:1300) and γ-Tubulin primary antibodies. IRDye-conjugated anti-goat (LI-COR IRDye® 800CW Donkey anti-Goat IgG, 926-32214, 1:10,000) and anti-mouse (LI-COR IRDye® 680RD Goat anti-Mouse IgG, 926-68070, 1:20,000) secondary antibodies were used. Immune complexes were detected using LI-COR Odyssey Imaging System.ELISAsHigh-binding 96-well ELISA plates (Costar, Corning) were coated overnight with goat anti-mouse IgGs, anti-mouse IgMs (Jackson ImmunoResearch), or anti-mouse IgG1 antibodies (Southern Biotech) (250 ng/well in PBS). Plates were washed with 0.05% Tween-20-PBS (PBST), blocked for 2 h with 2% BSA, and 1 mM EDTA-PBST (Blocking buffer). After PBST-washings, plates were incubated for 2 h with 1:100 PBS-diluted plasma and seven consecutive 1:3 dilutions in duplicate. Purified mouse IgG, IgG1 (Sigma-Aldrich), and IgM (Merck Millipore) antibodies starting at 12 µg/ml and seven consecutive 1:3 dilutions in PBS were used as standards. After PBST-washings, plates were incubated for 1 h with HRP-conjugated goat anti-mouse IgGs, anti-mouse IgM (Jackson ImmunoResearch), or rat anti-mouse IgG1 antibodies (Southern Biotech) in blocking buffer, washed, and revealed by adding HRP chromogenic substrate (ABTS solution, Euromedex). Experiments were performed at room temperature using HydroSpeed™ microplate washer and Sunrise™ microplate absorbance reader (Magellan v7.2, Tecan Männedorf), with optical density measurements made at 405 nm (OD405 nm).CSR-HTGTSHTGTS libraries with a 5′Sμ bait were generated from primary splenic B cells stimulated with LPS, IL-4, and anti-IgD dextran for 96 h. A total of 25 μg gDNA from the stimulated splenic B cells was sonicated (25 s ON and 60 s OFF, two cycles with low-energy input) on a Diagenode Bioruptor sonicator. The templates were amplified with a biotinylated 5′Sμ primer after sonication. The LAM-PCR products were incubated with streptavidin C1 beads (#65001, Thermo Fisher Scientific) for 4 h at room temperature. The enriched biotin-labeled LAM-PCR products were ligated with an adapter with the following program (25 °C 1 h, 22 °C 3 h, 16 °C overnight). The adapter-ligated products were amplified by nested PCR with barcode primers and tag PCR with P5-I5 and P7-I7 primers. The PCR products from 500 bp to 1000 bp were purified by separation on 1% TAE gel. HTGTS libraries were sequenced by paired-end 150 bp sequencing on a Next-SeqTM550 (Illumina). More details of the method have been described14,77.Libraries were processed via the published pipeline78. The libraries from Shld1−/−, Xlf−/−, Xlf−/−Shld1−/− and their WT C57BL/6 control mice were mapped against the mm9 genome as described previously14,77. Data were analyzed and plotted after removing duplicates14,77. Each experiment was repeated three times for statistical analyses. The junction numbers within the Sμ and Sγ1, as well as the percentage analysis of these S-regions with respect to total junctions within the CH-containing portion of the IgH were plotted in Fig. 5 and Supplementary Fig. 7. The numbers and percentages were indicated in the corresponding panels. The MH analysis were described in a previous study13.Statistics and reproducibilityStatistical analyses were performed with GraphPad Prism v7.04 and BiostaTGV (https://biostatgv.sentiweb.fr/) and using the tests as indicated in the respective figure legends. Significance; ns, not significant (p ≥ 0.05), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Unless indicated otherwise, all immunoblots are representative of at least two independent experiments, with uncropped blots shown in the Source data file.Reporting SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article.
Data availability
The CSR-HTGTS data have been deposited in NCBI’s Gene Expression Omnibus under the accession number GSE202567. The Long-range PCR sequencing (Pacbio) data have been deposited in NCBI’s Sequence Read Archive under the accession number PRJNA831666. All other data can be found in the Supplementary Data of this paper or in the Source Data. This includes all uncropped blots, gels, and data shown in graphs throughout the manuscript, including the Supplementary Figures. All data are available from the authors upon reasonable request. Source data are provided with this paper.
Code availability
All of the code used in the paper was from published studies and is cited in the manuscript.
ReferencesAlt, F. W., Zhang, Y., Meng, F. L., Guo, C. & Schwer, B. Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 152, 417–429 (2013).Article
CAS
PubMed
PubMed Central
Google Scholar
Lescale C. & Deriano L. Encyclopedia of Cell Biology 2nd edn (Elsevier, 2022).Bassing, C. H., Swat, W. & Alt, F. W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109, S45–S55 (2002).Article
CAS
PubMed
Google Scholar
Schatz, D. G. & Swanson, P. C. V(D)J recombination: mechanisms of initiation. Annu Rev. Genet. 45, 167–202 (2011).Article
CAS
PubMed
Google Scholar
Lescale, C. & Deriano, L. The RAG recombinase: beyond breaking. Mech. Ageing Dev. 165, 3–9 (2017).Article
CAS
PubMed
Google Scholar
Helmink, B. A. & Sleckman, B. P. The response to and repair of RAG-mediated DNA double-strand breaks. Annu Rev. Immunol. 30, 175–202 (2012).Article
CAS
PubMed
PubMed Central
Google Scholar
Feng, Y., Seija, N., Di Noia, J. M. & Martin, A. AID in antibody diversification: there and back again. Trends Immunol. 41, 586–600 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Stavnezer, J. & Schrader, C. E. IgH chain class switch recombination: mechanism and regulation. J. Immunol. 193, 5370–5378 (2014).Article
CAS
PubMed
Google Scholar
Deriano, L. & Roth, D. B. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev. Genet. 47, 433–455 (2013).Article
CAS
PubMed
Google Scholar
Boboila, C., Alt, F. W. & Schwer, B. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv. Immunol. 116, 1–49 (2012).Article
CAS
PubMed
Google Scholar
Wang, X. S., Lee, B. J. & Zha, S. The recent advances in non-homologous end-joining through the lens of lymphocyte development. DNA Repair 94, 102874 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Nussenzweig, A. & Nussenzweig, M. C. Origin of chromosomal translocations in lymphoid cancer. Cell 141, 27–38 (2010).Article
CAS
PubMed
PubMed Central
Google Scholar
Panchakshari, R. A. et al. DNA double-strand break response factors influence end-joining features of IgH class switch and general translocation junctions. Proc. Natl Acad. Sci. USA 115, 762–767 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Dong, J. et al. Orientation-specific joining of AID-initiated DNA breaks promotes antibody class switching. Nature 525, 134–139 (2015).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Reina-San-Martin, B., Chen, J., Nussenzweig, A. & Nussenzweig, M. C. Enhanced intra-switch region recombination during immunoglobulin class switch recombination in 53BP1-/- B cells. Eur. J. Immunol. 37, 235–239 (2007).Article
CAS
PubMed
Google Scholar
Ward, I. M. et al. 53BP1 is required for class switch recombination. J. Cell Biol. 165, 459–464 (2004).Article
CAS
PubMed
PubMed Central
Google Scholar
Manis, J. P. et al. 53BP1 links DNA damage response pathways to immunoglobulin heavy chain class switch recombination. Nat. Immunol. 5, 481–487 (2004).Difilippantonio, S. et al. 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature 456, 529–533 (2008).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Kumar, V., Alt, F. W. & Oksenych, V. Functional overlaps between XLF and the ATM-dependent DNA double strand break response. DNA Repair 16, 11–22 (2014).Article
CAS
PubMed
PubMed Central
Google Scholar
Oksenych, V. et al. Functional redundancy between repair factor XLF and damage response mediator 53BP1 in V(D)J recombination and DNA repair. Proc. Natl Acad. Sci. USA 109, 2455–2460 (2012).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Liu, X. et al. Overlapping functions between XLF repair protein and 53BP1 DNA damage response factor in end joining and lymphocyte development. Proc. Natl Acad. Sci. USA 109, 3903–3908 (2012).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Zha, S. et al. ATM damage response and XLF repair factor are functionally redundant in joining DNA breaks. Nature 469, 250–254 (2011).Article
ADS
CAS
PubMed
Google Scholar
Saha, T., Sundaravinayagam, D. & Di Virgilio, M. Charting a DNA repair roadmap for immunoglobulin class switch recombination. Trends Biochem. Sci. 46, 184–199 (2021).Article
CAS
PubMed
Google Scholar
Mirman, Z. & de Lange, T. 53BP1: a DSB escort. Genes Dev. 34, 7–23 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Setiaputra, D. & Durocher D. Shieldin - the protector of DNA ends. EMBO Rep. 20, e47560 (2019).Shinoda, K. et al. The dystonia gene THAP1 controls DNA double-strand break repair choice. Mol. Cell 81, 2611–2624.e10 (2021).Ling, A. K. et al. SHLD2 promotes class switch recombination by preventing inactivating deletions within the Igh locus. EMBO Rep. 21, e49823 (2020).Noordermeer, S. M. et al. The shieldin complex mediates 53BP1-dependent DNA repair. Nature 560, 117–121 (2018).Gupta, R. et al. DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity. Cell 173, 972–988.e23 (2018).Ghezraoui, H. et al. 53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ. Nature 560, 122–127 (2018).Findlay, S. et al. SHLD2/FAM35A co-operates with REV7 to coordinate DNA double-strand break repair pathway choice. EMBO J 37, e100158 (2018).Dev, H. et al. Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat. Cell Biol. 20, 954–965 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Xu, G. et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 521, 541–544 (2015).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Boersma, V. et al. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5’ end resection. Nature 521, 537–540 (2015).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
White, J. K. et al. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154, 452–464 (2013).Article
CAS
PubMed
PubMed Central
Google Scholar
Bradley, A. et al. The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm. Genome 23, 580–586 (2012).Article
PubMed
PubMed Central
Google Scholar
Skarnes, W. C. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342 (2011).Article
CAS
PubMed
PubMed Central
Google Scholar
Lescale, C. et al. RAG2 and XLF/Cernunnos interplay reveals a novel role for the RAG complex in DNA repair. Nat. Commun. 7, 10529 (2016).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Vera, G. et al. Cernunnos deficiency reduces thymocyte lifespan and alters the T cell repertoire in mice and humans. Mol. Cell Biol. 33, 701–711 (2012).Article
PubMed
CAS
Google Scholar
Lenden Hasse, H. et al. Generation and CRISPR/Cas9 editing of transformed progenitor B cells as a pseudo-physiological system to study DNA repair gene function in V(D)J recombination. J. Immunol. Methods 451, 71–77 (2017).Lescale, C. et al. Specific roles of XRCC4 paralogs PAXX and XLF during V(D)J recombination. Cell Rep. 16, 2967–2979 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Mirman, Z., Sasi, N. K., King, A., Chapman, J. R. & de Lange, T. 53BP1-shieldin-dependent DSB processing in BRCA1-deficient cells requires CST-Polalpha-primase fill-in synthesis. Nat. Cell Biol. 24, 51–61 (2022).Article
CAS
PubMed
Google Scholar
Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43, D512–D520 (2015).Article
CAS
PubMed
Google Scholar
Yan, C. T. et al. XRCC4 suppresses medulloblastomas with recurrent translocations in p53-deficient mice. Proc. Natl Acad. Sci. USA 103, 7378–7383 (2006).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Kraus, M., Alimzhanov, M. B., Rajewsky, N. & Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. Cell 117, 787–800 (2004).Article
CAS
PubMed
Google Scholar
Yan, C. T. et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 449, 478–482 (2007).Article
ADS
CAS
PubMed
Google Scholar
Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).Article
CAS
PubMed
Google Scholar
Zhang, X. et al. Fundamental roles of chromatin loop extrusion in antibody class switching. Nature 575, 385–389 (2019).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Wang, X. S. et al. CtIP-mediated DNA resection is dispensable for IgH class switch recombination by alternative end-joining. Proc. Natl Acad. Sci. USA 117, 25700–25711 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Liu, X. et al. ERCC6L2 promotes DNA orientation-specific recombination in mammalian cells. Cell Res. 30, 732–744 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Libri, A., Marton, T. & Deriano, L. The (lack of) DNA double-strand break repair pathway choice during V(D)J recombination. Front. Genet. 12, 823943 (2021).Article
CAS
PubMed
Google Scholar
Hung, P. J. et al. MRI is a DNA damage response adaptor during classical non-homologous end joining. Mol. Cell 71, 332–342.e338 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Liu, X., Shao, Z., Jiang, W., Lee, B. J. & Zha, S. PAXX promotes KU accumulation at DNA breaks and is essential for end-joining in XLF-deficient mice. Nat. Commun. 8, 13816 (2017).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Kumar, V., Alt, F. W. & Frock, R. L. PAXX and XLF DNA repair factors are functionally redundant in joining DNA breaks in a G1-arrested progenitor B-cell line. Proc. Natl Acad. Sci. USA 113, 10619–10624 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Sundaravinayagam, D. et al. 53BP1 supports immunoglobulin class switch recombination independently of its DNA double-strand break end protection function. Cell Rep. 28, 1389–1399 e1386 (2019).Article
CAS
PubMed
PubMed Central
Google Scholar
de Krijger, I. et al. MAD2L2 dimerization and TRIP13 control shieldin activity in DNA repair. Nat. Commun. 12, 5421 (2021).Article
ADS
PubMed
PubMed Central
CAS
Google Scholar
Di Virgilio, M. et al. Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 339, 711–715 (2013).Article
ADS
PubMed
CAS
Google Scholar
Chapman, J. R. et al. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol. Cell 49, 858–871 (2013).Setiaputra, D. et al. RIF1 acts in DNA repair through phosphopeptide recognition of 53BP1. Mol. Cell 82, 1359–1371.e9 (2022).Ochs, F. et al. Stabilization of chromatin topology safeguards genome integrity. Nature 574, 571–574 (2019).Article
ADS
CAS
PubMed
Google Scholar
Zhang, Y., Zhang, X., Dai, H. Q., Hu, H. & Alt, F. W. The role of chromatin loop extrusion in antibody diversification. Nat. Rev. Immunol. (2022).Murayama, Y., Samora, C. P., Kurokawa, Y., Iwasaki, H. & Uhlmann, F. Establishment of DNA-DNA interactions by the cohesin ring. Cell 172, 465–477.e415 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Gao, S. et al. An OB-fold complex controls the repair pathways for DNA double-strand breaks. Nat. Commun. 9, 3925 (2018).Article
ADS
PubMed
PubMed Central
CAS
Google Scholar
Yamane, A. et al. RPA accumulation during class switch recombination represents 5’-3’ DNA-end resection during the S-G2/M phase of the cell cycle. Cell Rep. 3, 138–147 (2013).Article
CAS
PubMed
PubMed Central
Google Scholar
Liang, Z. et al. Ku70 suppresses alternative end joining in G1-arrested progenitor B cells. Proc. Natl Acad. Sci. USA 118, e2103630118 (2021).Yu, W. et al. Repair of G1 induced DNA double-strand breaks in S-G2/M by alternative NHEJ. Nat. Commun. 11, 5239 (2020).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Ochs, F. et al. 53BP1 fosters fidelity of homology-directed DNA repair. Nat. Struct. Mol. Biol. 23, 714–721 (2016).Article
CAS
PubMed
Google Scholar
Clairmont, C. S. & D’Andrea, A. D. REV7 directs DNA repair pathway choice. Trends Cell Biol. 31, 965–978 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Clairmont, C. S. et al. TRIP13 regulates DNA repair pathway choice through REV7 conformational change. Nat. Cell Biol. 22, 87–96 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Boboila, C. et al. Alternative end-joining catalyzes class switch recombination in the absence of both Ku70 and DNA ligase 4. J. Exp. Med. 207, 417–427 (2010).Article
PubMed
PubMed Central
CAS
Google Scholar
Zan, H. et al. Rad52 competes with Ku70/Ku86 for binding to S-region DSB ends to modulate antibody class-switch DNA recombination. Nat. Commun. 8, 14244 (2017).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Xu, Y., Zhou, H., Post, G., Zan, H. & Casali, P. Rad52 mediates class-switch DNA recombination to IgD. Nat. Commun. 13, 980 (2022).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Ward, I. M., Minn, K., van Deursen, J. & Chen, J. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol. Cell Biol. 23, 2556–2563 (2003).Article
CAS
PubMed
PubMed Central
Google Scholar
Bredemeyer, A. L. et al. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442, 466–470 (2006).Article
ADS
CAS
PubMed
Google Scholar
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).Article
CAS
PubMed
PubMed Central
Google Scholar
Cokelaer, T., Desvillechabrol, D., Legendre, R. & Cardon, M. ‘Sequana’: a set of Snakemake NGS pipelines. J. Open Source Soft. 2, 352 (2017).Zhang, X., Yoon, H. S., Chapdelaine-Williams, A. M., Kyritsis, N. & Al, F. W. Physiological role of the 3’IgH CBEs super-anchor in antibody class switching. Proc Natl Acad Sci USA 118, e2024392118 (2021).Hu, J. et al. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat. Protoc. 11, 853–871 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Download referencesAcknowledgementsWe thank the Wellcome Trust Sanger Institute Mouse Genetics Project (Sanger MGP) and its funders for providing the mutant mouse line (Allele: Shld1em1(IMPC)Wtsi), and INFRAFRONTIER/EMMA (www.infrafrontier.eu). Funding information may be found at www.sanger.ac.uk/mouseportal and associated primary phenotypic information at www.mousephenotype.org. We thank the Institut Pasteur animal facility, specifically Quentin Mille, Jeromine Rohard Blanco, and Franck Bourgade for mouse weighing. We thank Jean-Pierre de Villartay for providing the CD21-Cre3a line and Klaus Rajewsky and MGC for permission to use the line. We thank Michela Di Virgilio for providing 53BP1 knockout animals and Junjie Chen for permission to use them. We thank members of the Deriano lab for their discussion and technical help. We thank Bernardo Reina-San-Martin for the discussion and advices. We thank Christopher Carnie for the discussion on the design of SHLD1 mutant sites. The Deriano laboratory is funded by Institut Pasteur, Institut National de la Santé et de la Recherche Médicale (Inserm), Wordwide Cancer Research (grant # 19-0333), Ligue Nationale Contre le Cancer (Equipe labellisée 2019), and Institut National du Cancer (INCa, grant # PLBIO19-122). E.V. is supported by the French Ministry of Higher Education, Research, and Innovation (Doctoral School Bio Sorbonne Paris Cité) and by the Fondation pour la Recherche Médicale. W.W. is part of the Pasteur–Paris University International Ph.D. program and received funding from the CNBG company, China. The Balmus laboratory at the UK DRI is funded by the Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK. Research in the Jackson laboratory is funded by Cancer Research UK (CRUK) program grant DRCPGM\100005 and core grant C6946/A24843; Wellcome Investigator award 206388/Z/17/Z and core grant 203144; and ERC Synergy award 855741. S.P.J. receives a salary from the University of Cambridge. F.W.A is an investigator of the Howard Hughes Medical Institute. H.M. received core grants from the Institut Pasteur, the INSERM and the Milieu Intérieur Program (ANR-10-LABX-69-01).Author informationAuthor notesXuefei ZhangPresent address: Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, ChinaAuthors and AffiliationsInstitut Pasteur, Université Paris Cité, INSERM U1223, Équipe Labellisée Ligue Contre Le Cancer, Genome Integrity, Immunity and Cancer Unit, 75015, Paris, FranceEstelle Vincendeau, Wenming Wei, Wei Yu, Hélène Lenden-Hasse, Chloé Lescale & Ludovic DerianoHoward Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children’s Hospital, Department of Genetics, Harvard Medical School, Boston, MA, 02115, USAXuefei Zhang & Frederick W. AltInstitut Pasteur, Université de Paris, INSERM U1222, Laboratory of Humoral Immunology, 75015, Paris, FranceCyril Planchais & Hugo MouquetInstitut Pasteur, Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques, 75015, Paris, FranceThomas Cokelaer & Juliana Pipoli da FonsecaInstitut Pasteur, Hub de Bioinformatique et Biostatistique, Département de Biologie Computationnelle, 75015, Paris, FranceThomas CokelaerWellcome Trust Sanger Institute, Cambridge, CB10 1SA, UKDavid J. AdamsWellcome Trust/Cancer Research UK Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UKStephen P. JacksonUK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UKGabriel BalmusAuthorsEstelle VincendeauView author publicationsYou can also search for this author in
PubMed Google ScholarWenming WeiView author publicationsYou can also search for this author in
PubMed Google ScholarXuefei ZhangView author publicationsYou can also search for this author in
PubMed Google ScholarCyril PlanchaisView author publicationsYou can also search for this author in
PubMed Google ScholarWei YuView author publicationsYou can also search for this author in
PubMed Google ScholarHélène Lenden-HasseView author publicationsYou can also search for this author in
PubMed Google ScholarThomas CokelaerView author publicationsYou can also search for this author in
PubMed Google ScholarJuliana Pipoli da FonsecaView author publicationsYou can also search for this author in
PubMed Google ScholarHugo MouquetView author publicationsYou can also search for this author in
PubMed Google ScholarDavid J. AdamsView author publicationsYou can also search for this author in
PubMed Google ScholarFrederick W. AltView author publicationsYou can also search for this author in
PubMed Google ScholarStephen P. JacksonView author publicationsYou can also search for this author in
PubMed Google ScholarGabriel BalmusView author publicationsYou can also search for this author in
PubMed Google ScholarChloé LescaleView author publicationsYou can also search for this author in
PubMed Google ScholarLudovic DerianoView author publicationsYou can also search for this author in
PubMed Google ScholarContributionsL.D. conceived the project and the studies. L.D. and C.L. supervised the work. L.D., C.L., and E.V. designed experiments, analyzed data, discussed the interpretation of the results, and wrote the manuscript. E.V. and C.L. performed all experiments with contributions from W.W. who performed V(D)J recombination experiments in pro-B cells, X.Z. and F.W.A. who conducted the HTGTS experiments and analysis of the data, C.P. and H.M. who conducted the serum Ig titration experiments and analysis of the data, W.Y. who generated CH12 knockout clones, H.L.-H. who generated pro-B cell knockout clones and, T.C. and J.P.d.F. performed long-range PCR sequencing and analyzed the data. D.J.A., S.P.J., and G.B. provided the SHLD1 knockout mouse line. S.P.J. and G.B. discussed the project and provided advice. All authors read and approved the manuscript.Corresponding authorsCorrespondence to
Chloé Lescale or Ludovic Deriano.Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks Paolo Casali and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationReporting SummarySource dataSource DataRights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Reprints and permissionsAbout this articleCite this articleVincendeau, E., Wei, W., Zhang, X. et al. SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination.
Nat Commun 13, 3707 (2022). https://doi.org/10.1038/s41467-022-31287-3Download citationReceived: 27 July 2021Accepted: 13 June 2022Published: 28 June 2022DOI: https://doi.org/10.1038/s41467-022-31287-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
Download PDF
Advertisement
Explore content
Research articles
Reviews & Analysis
News & Comment
Videos
Collections
Subjects
Follow us on Facebook
Follow us on Twitter
Sign up for alerts
RSS feed
About the journal
Aims & Scope
Editors
Journal Information
Open Access Fees and Funding
Calls for Papers
Editorial Values Statement
Journal Metrics
Editors' Highlights
Contact
Editorial policies
Top Articles
Publish with us
For authors
For Reviewers
Language editing services
Submit manuscript
Search
Search articles by subject, keyword or author
Show results from
All journals
This journal
Search
Advanced search
Quick links
Explore articles by subject
Find a job
Guide to authors
Editorial policies
Nature Communications (Nat Commun)
ISSN 2041-1723 (online)
nature.com sitemap
About Nature Portfolio
About us
Press releases
Press office
Contact us
Discover content
Journals A-Z
Articles by subject
Protocol Exchange
Nature Index
Publishing policies
Nature portfolio policies
Open access
Author & Researcher services
Reprints & permissions
Research data
Language editing
Scientific editing
Nature Masterclasses
Research Solutions
Libraries & institutions
Librarian service & tools
Librarian portal
Open research
Recommend to library
Advertising & partnerships
Advertising
Partnerships & Services
Media kits
Branded
content
Professional development
Nature Careers
Nature
Conferences
Regional websites
Nature Africa
Nature China
Nature India
Nature Italy
Nature Japan
Nature Korea
Nature Middle East
Privacy
Policy
Use
of cookies
Your privacy choices/Manage cookies
Legal
notice
Accessibility
statement
Terms & Conditions
Your US state privacy rights
© 2024 Springer Nature Limited
Close banner
Close
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.
Email address
Sign up
I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.
Close banner
Close
Get the most important science stories of the day, free in your inbox.
Sign up for Nature Briefing